R/plotReducedDim.R

Defines functions paired_reddim_plot plotReducedDim

Documented in plotReducedDim

#' Plot reduced dimensions
#'
#' Plot cell-level reduced dimension results stored in a SingleCellExperiment
#' object.
#'
#' @param object A SingleCellExperiment object.
#' @param dimred A string or integer scalar indicating the reduced dimension
#' result in \code{reducedDims(object)} to plot.
#' @param ncomponents A numeric scalar indicating the number of dimensions to
#' plot, starting from the first dimension.
#' Alternatively, a numeric vector specifying the dimensions to be plotted.
#' @param percentVar A numeric vector giving the proportion of variance in
#' expression explained by each reduced dimension. 
#' Only expected to be used in PCA settings, e.g., in the
#' \code{\link[scater]{plotPCA}} function.
#' @param colour_by Specification of a column metadata field or a feature to
#' colour by, see the \code{by} argument in \code{?\link{retrieveCellInfo}}
#' for possible values. 
#' @param shape_by Specification of a column metadata field or a feature to
#' shape by, see the \code{by} argument in \code{?\link{retrieveCellInfo}}
#' for possible values. 
#' @param size_by Specification of a column metadata field or a feature to
#' size by, see the \code{by} argument in \code{?\link{retrieveCellInfo}}
#' for possible values. 
#' @param by_exprs_values A string or integer scalar specifying which assay to
#' obtain expression values from, 
#' for use in point aesthetics - see the \code{exprs_values} argument in
#' \code{?\link{retrieveCellInfo}}.
#' @param text_by String specifying the column metadata field with which to add
#' text labels on the plot.
#' This must refer to a categorical field, i.e., coercible into a factor.
#' Alternatively, an \link{AsIs} vector or data.frame, see
#' \code{?\link{retrieveCellInfo}}.
#' @param text_size Numeric scalar specifying the size of added text.
#' @param text_colour String specifying the colour of the added text.
#' @param label_format Character vector of length 2 containing format strings
#' to use for the axis labels. 
#' The first string expects a string containing the result type (e.g.,
#' \code{"PCA"}) and an integer containing the component number,
#' while the second string shows the rounded percentage of variance explained
#' and is only relevant when this information is provided in \code{object}.
#' @param other_fields Additional cell-based fields to include in the
#' data.frame, see \code{?"\link{scater-plot-args}"} for details.
#' @param swap_rownames Column name of \code{rowData(object)} to be used to 
#'  identify features instead of \code{rownames(object)} when labelling plot 
#'  elements.
#' @param ... Additional arguments for visualization, see
#' \code{?"\link{scater-plot-args}"} for details.
#'
#' @details
#' If \code{ncomponents} is a scalar equal to 2, a scatterplot of the first
#' two dimensions is produced. 
#' If \code{ncomponents} is greater than 2, a pairs plots for the top
#' dimensions is produced.
#'
#' Alternatively, if \code{ncomponents} is a vector of length 2, a scatterplot
#' of the two specified dimensions is produced.
#' If it is of length greater than 2, a pairs plot is produced containing all
#' pairwise plots between the specified dimensions.
#'
#' The \code{text_by} option will add factor levels as labels onto the plot,
#' placed at the median coordinate across all points in that level.
#' This is useful for annotating position-related metadata (e.g., clusters)
#' when there are too many levels to distinguish by colour.
#' It is only available for scatterplots.
#'
#' @return A ggplot object
#'
#' @author Davis McCarthy, with modifications by Aaron Lun
#'
#' @name plotReducedDim
#' @aliases plotReducedDim 
#'
#' @examples
#' example_sce <- mockSCE()
#' example_sce <- logNormCounts(example_sce)
#'
#' example_sce <- runPCA(example_sce, ncomponents=5)
#' plotReducedDim(example_sce, "PCA")
#' plotReducedDim(example_sce, "PCA", colour_by="Cell_Cycle")
#' plotReducedDim(example_sce, "PCA", colour_by="Gene_0001")
#'
#' plotReducedDim(example_sce, "PCA", ncomponents=5)
#' plotReducedDim(example_sce, "PCA", ncomponents=5, colour_by="Cell_Cycle", 
#'     shape_by="Treatment")
#'
#' @export
#' @importFrom SingleCellExperiment reducedDim
#' @importFrom ggplot2 annotate
plotReducedDim <- function(object, dimred, ncomponents = 2, percentVar = NULL, 
    colour_by = NULL, shape_by = NULL, size_by = NULL,
    by_exprs_values = "logcounts", 
    text_by = NULL, text_size = 5, text_colour = "black", 
    label_format = c("%s %i", " (%i%%)"), other_fields = list(),
    swap_rownames = NULL, ...)
{
    ## Extract reduced dimension representation of cells
    red_dim <- as.matrix(reducedDim(object, dimred))
    if (any(ncomponents > ncol(red_dim))) {
        stop(sprintf("'ncomponents' is larger than 'ncols(reducedDim(object, '%s'))'", dimred))
    }
    if (is.null(percentVar)) {
        percentVar <- attr(red_dim, "percentVar")
    }

    # Figuring out what we should plot.
    if (length(ncomponents)==1L) {
        to_plot <- seq_len(ncomponents)
    } else {
        to_plot <- ncomponents
    }

    ## Define data.frame for plotting (avoid clash between column names)
    colnames(red_dim) <- NULL 
    df_to_plot <- data.frame(red_dim[, to_plot, drop=FALSE])

    ## checking visualization arguments
    vis_out <- .incorporate_common_vis_col(df_to_plot, se = object, 
        colour_by = colour_by, shape_by = shape_by, size_by = size_by, 
        by_exprs_values = by_exprs_values, other_fields = other_fields,
        swap_rownames = swap_rownames)
    df_to_plot <- vis_out$df
    colour_by <- vis_out$colour_by
    shape_by <- vis_out$shape_by
    size_by <- vis_out$size_by

    ## Dispatching to the central plotter in the simple case of two dimensions.
    if (length(to_plot)==2L) {
        colnames(df_to_plot)[seq_along(to_plot)] <- c("X", "Y")

        labs <- sprintf(label_format[1], dimred, to_plot)
        if (!is.null(percentVar)) {
            labs <- paste0(labs, sprintf(label_format[2], round(percentVar[to_plot])))
        }

        plot_out <- .central_plotter(df_to_plot, xlab = labs[1], ylab = labs[2],
            colour_by = colour_by, size_by = size_by, shape_by = shape_by, ...,
            point_FUN=NULL)

        # Adding text with the median locations of the 'text_by' vector.
        if (!is.null(text_by)) {
            text_out <- retrieveCellInfo(object, text_by, search="colData")
            text_out$val <- .coerce_to_factor(text_out$val, level.limit=Inf)
            by_text_x <- vapply(split(df_to_plot$X, text_out$val), median, FUN.VALUE=0)
            by_text_y <- vapply(split(df_to_plot$Y, text_out$val), median, FUN.VALUE=0)
            plot_out <- plot_out + annotate("text", x=by_text_x, y=by_text_y, 
                label=names(by_text_x), size=text_size, colour=text_colour)
        }

        return(plot_out)
    }

    ## Otherwise, creating a paired reddim plot.
    paired_reddim_plot(df_to_plot, to_plot = to_plot, percentVar = percentVar,
        colour_by = colour_by, shape_by = shape_by, size_by = size_by, 
        dimred=dimred, label_format=label_format, ...)
}

#' @importFrom ggplot2 ggplot facet_grid stat_density geom_point theme
paired_reddim_plot <- function(df_to_plot, to_plot, dimred, percentVar=NULL,
    colour_by=NULL, shape_by=NULL, size_by=NULL,
    label_format=c("%s %i", " (%i%%)"),
    add_legend = TRUE, theme_size = 10, point_alpha = 0.6, point_size = NULL) 
{
    reddim_cols <- seq_along(to_plot)
    df_to_expand <- df_to_plot[, reddim_cols]

    labs <- sprintf(label_format[1], dimred, to_plot)
    if (!is.null(percentVar)) {
        labs <- paste0(labs, sprintf(label_format[2], round(percentVar[to_plot])))
    }
    colnames(df_to_expand) <- labs

    gg1 <- .makePairs(df_to_expand)
    df_to_plot_big <- data.frame(gg1$all, df_to_plot[, -reddim_cols])
    colnames(df_to_plot_big)[-seq_len(4)] <- colnames(df_to_plot)

    plot_out <- ggplot(df_to_plot_big, aes_string(x = "x", y = "y")) +
        facet_grid(xvar ~ yvar, scales = "free") +
        stat_density(aes_string(x = "x",
                                y = "(..scaled.. * diff(range(x)) + min(x))"),
                     data = gg1$densities, position = "identity",
                     colour = "grey20", geom = "line") +
        xlab("") +
        ylab("") +
        theme_bw(theme_size)
    
    ## Setting up the point addition with various aesthetics.
    point_out <- .get_point_args(colour_by, shape_by, size_by, alpha = point_alpha, size = point_size)
    plot_out <- plot_out + do.call(geom_point, point_out$args)
    if (!is.null(colour_by)) { 
        plot_out <- .resolve_plot_colours(plot_out, df_to_plot$colour_by, colour_by, fill=point_out$fill)
    } 
 
    # Setting the legend details.
    plot_out <- .add_extra_guide(plot_out, shape_by, size_by)
    if ( !add_legend ) {
        plot_out <- plot_out + theme(legend.position = "none")
    }

    plot_out
}

Try the scater package in your browser

Any scripts or data that you put into this service are public.

scater documentation built on Feb. 28, 2021, 2:01 a.m.