Nothing
# function definitions ##### version: 02-22-2019 should sync from the version in macbook:
# /Users/weili/Dropbox/work/cropseq/Shendure/nmeth18/multiple_guides_function.R
prepare_matrix_for_pair_reg_indmat <- function(targetobj, ind_matrix, Xmat, Ymat, Amat, cell_cutoff = 4,
ngctrlgene = c("NonTargetingControlGuideForHuman")) {
# this function returns (X, Y) for paired KO regression Xmat, Ymat, Amat: these are regression for
# single genes the gene and cell column in ind_matrix is used to determine the target of each cell
scalef = getscaledata(targetobj)
# new code
s_pair_x = c()
s_pair_y = c()
cells_s = rep(0, nrow(ind_matrix))
names(cells_s) = rownames(ind_matrix)
for (i in 1:(ncol(ind_matrix) - 1)) {
if (i%%10 == 1) {
message(paste(i, "..."))
}
for (j in (i + 1):ncol(ind_matrix)) {
nct = sum(ind_matrix[, i] & ind_matrix[, j])
if (nct >= cell_cutoff) {
s_pair_x = append(s_pair_x, i)
s_pair_y = append(s_pair_y, j)
cells_s = cells_s + (ind_matrix[, i] & ind_matrix[, j])
}
}
}
cells_combine = names(cells_s)[which(cells_s > 0)]
cells_combine = cells_combine[cells_combine %in% colnames(scalef)]
# construct a matrix of Y=XA, Y= (cells*expressed genes), X=(cells* KO genes), A=(KO genes *
# expressed genes) select_genes=rownames(targetobj@raw.data)[
# which(rowSums(targetobj@raw.data!=0)>ncol(targetobj@raw.data)/100)]
select_genes = colnames(Ymat)
select_cells = rownames(Ymat)
YmatT_db = scalef[select_genes, cells_combine]
Ymat_db = as.matrix(t(YmatT_db)) # (cells * expressed genes)
# tgphenotype=targetobj@meta.data[select_cells,'geneID']
# tgf=targetobj@meta.data[select_cells,'geneID'] tgf[tgf%in%ngctrlgene]='NegCtrl'
# tgphenotype=as.factor(tgf)
tgphenotype = as.factor(colnames(Xmat))
# need to calculate residue
# Xmat_db_res=matrix(rep(0,length(cells_combine)*length(unique(tgphenotype))),nrow=length(cells_combine))
# rownames(Xmat_db_res)=cells_combine colnames(Xmat_db_res)=levels(tgphenotype)
Xmat_db_res = Xmat[cells_combine, ]
# cells_combine[as.matrix(cbind(1:nrow(cells_combine),as.numeric(tgphenotype)))]=1 browser()
# residule of Xmat * A =Ymat
Ymat_db_residule = Ymat_db - Xmat_db_res %*% Amat
message("creating matrix for paired gene...")
# now, create X matrix
Xmat_db = matrix(rep(0, length(cells_combine) * length(s_pair_x)), nrow = length(cells_combine))
rownames(Xmat_db) = cells_combine
colnames(Xmat_db) = paste(colnames(ind_matrix)[s_pair_x], "_", colnames(ind_matrix)[s_pair_y], sep = "")
message(paste("selected gene pairs:", length(s_pair_x)))
select_pair_genes = list()
for (i in 1:length(s_pair_x)) {
nct = rownames(ind_matrix)[which(ind_matrix[, s_pair_x[i]] & ind_matrix[, s_pair_y[i]])]
cn = nct[nct %in% cells_combine]
Xmat_db[cn, i] = 1
namex = colnames(ind_matrix)[s_pair_x[i]]
namey = colnames(ind_matrix)[s_pair_y[i]]
genepairname = paste(namex, "_", namey, sep = "")
select_pair_genes[[genepairname]] = cn
}
return(list(Xmat_db, Ymat_db_residule, select_pair_genes))
}
TRUE
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.