clustering: HC clustering for a number of resolutions

Description Usage Arguments Value Author(s) Examples

View source: R/CORE_clustering.R

Description

performs 40 clustering runs or more depending on windows

Usage

1
2
3
clustering(object = NULL, ngenes = 1500, windows = seq(from = 0.025,
  to = 1, by = 0.025), remove_outlier = c(0), nRounds = 1,
  PCA = FALSE, nPCs = 20, verbose = FALSE)

Arguments

object

is a SingleCellExperiment object from the train mixed population

ngenes

number of top variable genes to be used

windows

a numeric specifying the number of windows to test

remove_outlier

a vector containing IDs for clusters to be removed the default vector contains 0, as 0 is the cluster with singletons

nRounds

number of iterations to remove a selected clusters

PCA

logical specifying if PCA is used before calculating distance matrix

nPCs

number of principal components from PCA dimensional reduction to be used

verbose

a logical whether to display additional messages

Value

clustering results

Author(s)

Quan Nguyen, 2017-11-25

Examples

1
2
3
4
day5 <- day_5_cardio_cell_sample
mixedpop2 <-new_summarized_scGPS_object(ExpressionMatrix = day5$dat5_counts, 
    GeneMetadata = day5$dat5geneInfo, CellMetadata = day5$dat5_clusters)
test <-clustering(mixedpop2, remove_outlier = c(0))

scGPS documentation built on Nov. 8, 2020, 5:22 p.m.