Nothing
#' simuDM
#'
#' Simulation for Differential Modalities Case
#'
#' @inheritParams singleCellSimu
#' @inheritParams simuDE
#'
#' @references Korthauer KD, Chu LF, Newton MA, Li Y, Thomson J, Stewart R,
#' Kendziorski C. A statistical approach for identifying differential
#' distributions
#' in single-cell RNA-seq experiments. Genome Biology. 2016 Oct 25;17(1):222.
#' \url{https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-
#' 1077-y}
#'
#' @return Simulated_Data Simulated dataset for DM
simuDM <- function(Dataset1, Simulated_Data, DEIndex, samplename,
Zeropercent_Base, f, FC, coeff, RP, modeFC,
generateZero, constantZero, varInflation){
numGenes <- nrow(Simulated_Data)
numSamples <- ncol(Simulated_Data)/2
numDE <- length(DEIndex)
# calculate means and variances with fold changes
MVC2 <- matrix(data=0,nrow=numGenes,ncol=2)
if(generateZero %in% c("empirical", "constant")){
MVC2[,1:2] <- t(sapply(1:length(samplename), function(x)
calcMV(Dataset1[samplename[x],], FC=FC[x], FC.thresh=FC[x]^(1/2),
threshold = 3, include.zeroes=FALSE)))
}else{
MVC2[,1:2] <- t(sapply(1:length(samplename), function(x)
calcMV(Dataset1[samplename[x],], FC=FC[x], FC.thresh=FC[x]^(1/2),
threshold = 3, include.zeroes=TRUE)))
}
# calculate r and p parameters of NB
RPC2 <- t(apply(MVC2[,1:2,drop=FALSE], 1, function(x) calcRP(x[1], x[2])))
# calculate r and p parameters of inflated variance NB and add
# to the RPC2 matrix
if(!is.null(varInflation)){
MVC2.Infl1 <- MVC2
MVC2.Infl1[,1] <- MVC2[,1]*(1 +
MVC2[,2]/(MVC2[,1]^2))^((varInflation[1]-1)/2)
MVC2.Infl1[,2] <- MVC2[,2]*( ((1+MVC2[,2]/(MVC2[,1]^2))^(2*varInflation[1])-
(1 + MVC2[,2]/(MVC2[,1]^2))^varInflation[1]) /
((1 + MVC2[,2]/(MVC2[,1]^2))^2-(1 + MVC2[,2]/
(MVC2[,1]^2))) )
MVC2.Infl2 <- MVC2
MVC2.Infl2[,1] <- MVC2[,1]*(1 +
MVC2[,2]/(MVC2[,1]^2))^((varInflation[2]-1)/2)
MVC2.Infl2[,2] <- MVC2[,2]*( ((1+MVC2[,2]/(MVC2[,1]^2))^(2*varInflation[2])-
(1 + MVC2[,2]/(MVC2[,1]^2))^varInflation[2]) /
((1 + MVC2[,2]/(MVC2[,1]^2))^2-(1 + MVC2[,2]/
(MVC2[,1]^2))) )
RPC2 <- cbind(RPC2, t(apply(MVC2.Infl1[,1:2,drop=FALSE], 1, function(x)
calcRP(x[1], x[2]))))
RPC2 <- cbind(RPC2, t(apply(MVC2.Infl2[,1:2,drop=FALSE], 1, function(x)
calcRP(x[1], x[2]))))
}
dp <- c(1,0.5)
### Simulate data in condition1
for(i in 1:numGenes){
if(generateZero=="empirical"){
p <- round(numSamples*(1-Zeropercent_Base[i,1]))
} else if (generateZero=="constant"){
p <- round((1-constantZero)*numSamples)
}
if(generateZero %in% c("empirical", "constant")){
temp <- matrix(data=0,nrow=p,ncol=2)
if(is.null(varInflation)){
for(j in 1:p){
while(temp[j,1]==0){temp[j,1] <- rnbinom(1,RP[i,1],1-RP[i,2])}
while(temp[j,2]==0){temp[j,2] <- rnbinom(1,RPC2[i,1],1-RPC2[i,2])}
}
}else{
for(j in 1:p){
while(temp[j,1]==0){temp[j,1] <- rnbinom(1,RP[i,3],1-RP[i,4])}
while(temp[j,2]==0){temp[j,2] <- rnbinom(1,RPC2[i,3],1-RPC2[i,4])}
}
}
# place nonzeroes randomly
n1 <- round(p*dp[1],digits=0)
randp <- sample(1:numSamples, p, replace=FALSE)
Simulated_Data[i,randp] <- c(sample(temp[,1],n1,replace=FALSE),
sample(temp[,2],p-n1,replace=FALSE))
if(p<numSamples){
Simulated_Data[i,(1:numSamples)[-randp]] <-0
}
}else{
temp <- matrix(data=0,nrow=numSamples,ncol=2)
if(is.null(varInflation)){
temp[,1] <- rnbinom(numSamples,RP[i,1],1-RP[i,2])
temp[,2] <- rnbinom(numSamples,RPC2[i,1],1-RPC2[i,2])
}else{
temp[,1] <- rnbinom(numSamples,RP[i,3],1-RP[i,4])
temp[,2] <- rnbinom(numSamples,RPC2[i,3],1-RPC2[i,4])
}
# sample from each mode
n1 <- round(numSamples*dp[1],digits=0)
Simulated_Data[i,1:numSamples] <- c(sample(temp[,1],n1,replace=FALSE),
sample(temp[,2],numSamples-n1,
replace=FALSE))
}
### Simulate for condition2
if(generateZero=="empirical"){
p <- round(numSamples*(1-Zeropercent_Base[i,1]))
} else if (generateZero=="constant"){
p <- round((1-constantZero)*numSamples)
}
if(generateZero %in% c("empirical", "constant")){
if(i%in%DEIndex){
temp <- matrix(data=0,nrow=p,ncol=2)
if(is.null(varInflation)){
for(j in 1:p){
while(temp[j,1]==0){temp[j,1] <- rnbinom(1,RP[i,1],1-RP[i,2])}
while(temp[j,2]==0){temp[j,2] <- rnbinom(1,RPC2[i,1],1-RPC2[i,2])}
}
}else{
for(j in 1:p){
while(temp[j,1]==0){temp[j,1] <- rnbinom(1,RP[i,5],1-RP[i,6])}
while(temp[j,2]==0){temp[j,2] <- rnbinom(1,RPC2[i,5],1-RPC2[i,6])}
}
}
n1 <- round(p*dp[2],digits=0)
randp <- sample(1:numSamples, p, replace=FALSE)
Simulated_Data[i,numSamples+randp] <- c(sample(temp[,1],n1,
replace=FALSE),
sample(temp[,2],p-n1,
replace=FALSE))
if(p<numSamples){
Simulated_Data[i,((numSamples+1):(2*numSamples))[-randp]] <-0
}
}else{
temp <- matrix(data=0,nrow=p,ncol=2)
if(is.null(varInflation)){
for(j in 1:p){
while(temp[j,1]==0){temp[j,1] <- rnbinom(1,RP[i,1],1-RP[i,2])}
while(temp[j,2]==0){temp[j,2] <- rnbinom(1,RPC2[i,1],1-RPC2[i,2])}
}
}else{
for(j in 1:p){
while(temp[j,1]==0){temp[j,1] <- rnbinom(1,RP[i,5],1-RP[i,6])}
while(temp[j,2]==0){temp[j,2] <- rnbinom(1,RPC2[i,5],1-RPC2[i,6])}
}
}
n1 <- round(p*dp[1],digits=0)
randp <- sample(1:numSamples, p, replace=FALSE)
Simulated_Data[i,numSamples+randp] <- c(sample(temp[,1],n1,
replace=FALSE),
sample(temp[,2],p-n1,
replace=FALSE))
if(p<numSamples){
Simulated_Data[i,((numSamples+1):(2*numSamples))[-randp]] <-0
}
}
}else{
if(i%in%DEIndex){
temp <- matrix(data=0,nrow=numSamples,ncol=2)
if(is.null(varInflation)){
temp[,1] <- rnbinom(numSamples,RP[i,1],1-RP[i,2])
temp[,2] <- rnbinom(numSamples,RPC2[i,1],1-RPC2[i,2])
}else{
temp[,1] <- rnbinom(numSamples,RP[i,5],1-RP[i,6])
temp[,2] <- rnbinom(numSamples,RPC2[i,5],1-RPC2[i,6])
}
n1 <- round(numSamples*dp[2],digits=0)
Simulated_Data[i,((numSamples+1):(2*numSamples))] <-c(sample(temp[,1],
n1,replace=FALSE),
sample(temp[,2],
numSamples-n1,
replace=FALSE))
}else{
temp <- matrix(data=0,nrow=numSamples,ncol=2)
if(is.null(varInflation)){
temp[,1] <- rnbinom(numSamples,RP[i,1],1-RP[i,2])
temp[,2] <- rnbinom(numSamples,RPC2[i,1],1-RPC2[i,2])
}else{
temp[,1] <- rnbinom(numSamples,RP[i,5],1-RP[i,6])
temp[,2] <- rnbinom(numSamples,RPC2[i,5],1-RPC2[i,6])
}
n1 <- round(numSamples*dp[1],digits=0)
Simulated_Data[i,((numSamples+1):(2*numSamples))] <-
c(sample(temp[,1],n1,replace=FALSE),
sample(temp[,2],numSamples-n1,replace=FALSE))
}
}
}
return(list(Simulated_Data, f=f))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.