Nothing
#' @export
#' @title Calculates the similarity between two gene expression data.
#' @description Comparison is done across columns, i.e.,
#' how similar are the columns in the two dataset.
#' For gene expression data, format data so that gene names are in rows and
#' samples in columns.
#' @param dataReference Matrix. The reference data matrix, for example,
#' the experimental gene expression values
#' @param dataSimulation Matrix. The data matrix to be compared.
#' @param nClusters (optional) Integer. The number of clusters in which the
#' reference data should be clustered for comparison.
#' Not needed if clusterCut is provided.
#' @param pValue (optional) Numeric. p-value to consider two gene expression
#' sets as belonging to same cluster.
#' Ward's method with spearman correlation is used to determine if a
#' model belongs to a specific cluster.
#' @param permutedVar (optional) Similarity scores computed after permutations.
#' @param clusterCut (optional) Integer vector. Clsuter numbers assigned
#' to reference data.
#' If clusterCut is missing, hierarchical clustering using /code{ward.D2}
#' and /code{distance = (1-cor(x, method = "spear"))/2} will be used to
#' cluster the reference data.
#' @param clusterMethod (optional) Character - default \code{ward.D2}, other
#' options include \code{complete}. Clustering method to be used to cluster the
#' experimental data. \code{\link[stats]{hclust}} for other options.
#' @param corMethod (optional) Correlation method. Default method is "spearman".
#' For single cell data, use "kendall"
#' @param permutMethod "sample" or "reference"
#' @param permutations (optional) Integer. Default \code{1000}.
#' Number of gene permutations to generate the null distibution.
#' @param returnData (optional) Logical. Default \code{FALSE}. Whether to
#' return the sorted and clustered data.
#' @param buffer (optional) Numeric. Default \code{0.001}. The fraction of
#' models to be assigned to clusters to which no samples could be assigned.
#' For example, a minimum of 1 ghost sample in reference is assigned to
#' NULL cluster.
#' @param method (optional) character. Method to compare the gene expressions.
#' Default \code{pvalue}. One can use \code{variance} as well which assigns
#' clusters based on the cluster whose samples have minimum variance with
#' the simulated sample.
#' @return A list containing the KL distance of new cluster distribution from
#' reference data and
#' the probability of each cluster in the reference and simulated data.
#'
#' @section Related Functions:
#'
#' \code{\link{sracipeSimulate}}, \code{\link{sracipeKnockDown}},
#' \code{\link{sracipeOverExp}}, \code{\link{sracipePlotData}},
#' \code{\link{sracipeHeatmapSimilarity}}
sracipeHeatmapSimilarity = function(
dataReference, dataSimulation, clusterCut = NULL, nClusters = 3, pValue=0.05,
permutedVar, permutations = 1000, corMethod = "spearman",
clusterMethod = "ward.D2", method = "pvalue", buffer = 0.001,
permutMethod = "simulation", returnData = FALSE) {
#'
########
# _7: Each model is compared with permutations of random data
# Two new functions ClustFunction and ModelPValue
# Assigns clusters based on p values
# should work with all mean, min, z score type assignments
# as p values are related
# A separate funtion to change the assignment type. Change ClustFunction
commonGenes <- intersect(rownames(dataSimulation), rownames(dataReference))
if(length(commonGenes) == 0) {
message(" No Common genes found between the simulated and reference data.")
return()
}
if(is.null(colnames(dataReference))){
colnames(dataReference) <- seq_len(ncol(dataReference))
}
if(is.null(colnames(dataSimulation))){
colnames(dataSimulation) <- seq_len(ncol(dataSimulation))
}
message("Calculating the similarity index")
# nClusters = 3
n.models <- dim(dataReference)[2]
nModelsKO <- dim(dataSimulation)[2]
if (missing(permutations)) {
permutations = 1000
}
if (missing(corMethod)) {
corMethod <- "spearman"
}
refCor <- cor((dataReference), method = corMethod)
if (missing(clusterCut)) {
if(missing(nClusters)){
stop("Please specify the number of clusters using nClusters or
cluster assignments using clusterCut")
}
# cluster the reference data if the clutering assignments has not been
# provided.
distance <- as.dist((1-refCor)/2)
clusters <- hclust(distance, method = clusterMethod)
#plot(clusters)
clusterCut <- cutree(clusters, nClusters)
} else {
if(!missing(nClusters)){
warnings("Neglecting nClusters. The number of clusters will be
determined from clusterCut.")
}
nClusters <- length(unique(clusterCut))
}
# Use only selected genes for comparison.
# Clustering is done using all genes. This can lead to differences in
# how the clusters look.
dataReference <- dataReference[commonGenes, ]
dataSimulation <- dataSimulation[commonGenes, ]
# find the variance within each cluster
#TO DO Will standard deviation be better? shouldn't be with ward method.
refClusterVar <- c(rep(0,nClusters))
for(j in seq_len(nClusters))
{
# print(j)
temp.cluster.var <- (((1 - refCor[which(clusterCut==j),
which(clusterCut==j)])/2)^2)
refClusterVar[j] <- .ClustFunction(
temp.cluster.var[upper.tri(temp.cluster.var, diag = FALSE)])
temp.cluster.var <- NULL
}
# clusterCut <- clusterCut[1:10]
# dataReference <- dataReference[,1:10]
simulated.refCor <- t(cor(dataReference, dataSimulation, method = corMethod))
#clusterFreq <- table(CLUSTERCUT)/n_models
if (sum(is.na(simulated.refCor)) > 0) {
message("Error in correlation. Please verify the data")
}
simulatedClusterVar <- matrix(0, nrow=nModelsKO, ncol = nClusters)
for(i in seq_len(nModelsKO)){
for(j in seq_len(nClusters))
{
temp.cluster.var <- ((1 - simulated.refCor[i, which(clusterCut==j)])/2)^2
simulatedClusterVar[i,j] <- .ClustFunction(temp.cluster.var )
temp.cluster.var <- NULL
}
}
if (method == "variance") {
simulated.cluster <- matrix(0, nrow = nModelsKO, ncol = 2)
simulated.cluster[, 2] <- apply(simulatedClusterVar,1,min)
# simulated.cluster.allowed <- simulatedClusterVar < refClusterVar
simulated.cluster[, 1] <- apply(simulatedClusterVar,1,which.min)
simulated.cluster[which(3*refClusterVar[simulated.cluster[,1]] <
simulated.cluster[, 2]), 1] <- 0
simulated.cluster <- simulated.cluster[,-2]
}
# permutations = 1000
if(missing(method)) {
method = "pvalue"
}
if (method == "pvalue" ) {
message("pvalue method")
if(missing(permutedVar )) {
if(permutMethod == "reference"){
permutedVar <- .PermutedVar(simulated.refCor, clusterCut, permutations,
refClusterVar)
simulatedVarPValue <- .SimulatedVarPValue(permutedVar, pValue)
# rowSums(simulated.cluster.allowed)
# simulatedClusterVar.sorted <- sort(simulatedClusterVar,
# index.return = TRUE )
# simulated.cluster.allowed <- simulatedClusterVar < simulatedVarPValue
simulated.cluster <- matrix(0, nrow = nModelsKO, ncol = 2)
simulated.cluster[, 2] <- apply(simulatedClusterVar,1,min)
simulated.cluster[, 1] <- apply(simulatedClusterVar,1,which.min)
simulated.cluster[which(simulatedVarPValue[simulated.cluster[,1]] <
simulated.cluster[, 2]), 1] <- 0
simulated.cluster <- simulated.cluster[,-2]
} else {
message("simulation permutation")
pValueMat <- .ModelPvalue(
dataSimulation, dataReference, clusterCut, permutations,
refClusterVar, corMethod, simulatedClusterVar)
simulated.cluster <- matrix(0, nrow = nModelsKO, ncol = 2)
simulated.cluster[, 2] <- apply(pValueMat,1,min)
simulated.cluster[, 1] <- apply(pValueMat,1,which.min)
simulated.cluster[which(simulated.cluster[,2] > pValue), 1] <- 0
simulated.cluster <- simulated.cluster[,-2]
}
}
}
similarity <- list()
similarity$simClusters <- sort(simulated.cluster)
similarity$simClusters <- c(similarity$simClusters[similarity$simClusters>0],
similarity$simClusters[similarity$simClusters==0])
cluster.names <- unique(clusterCut)
#print(c("Original Clusters", cluster.names))
cluster.names <- c(0, cluster.names) #test
bufferEnteriesPerCluster <- max(1,as.integer(buffer*n.models))
clusterCut.adjusted <- c(clusterCut, rep(0,bufferEnteriesPerCluster))
simulated.cluster.names <- unique(simulated.cluster)
# print(c("Simulated Clusters", simulated.cluster.names))
missing.ref.clusters <- setdiff(cluster.names, simulated.cluster.names)
#print(c("Missing Clusters", missing.ref.clusters))
bufferEnteriesPerCluster <- max(1,as.integer(buffer*nModelsKO))
missing.ref.clusters.add <- numeric()
#c(rep(0,bufferEnteriesPerCluster*length(missing.ref.clusters)))
if (length(missing.ref.clusters) > 0) {
for(i in seq_along(missing.ref.clusters))
{
missing.ref.clusters.add <- c(missing.ref.clusters.add,
rep(missing.ref.clusters[i],
bufferEnteriesPerCluster))
}
}
simulated.cluster.adjusted <- c(simulated.cluster, missing.ref.clusters.add)
ref.cluster.freq <- table(clusterCut.adjusted)/(length(clusterCut.adjusted))
# similarity$ref.cluster.freq <- table(clusterCut)/n.models
similarity$ref.cluster.freq <- ref.cluster.freq
simulated.cluster.freq <-
table(simulated.cluster.adjusted)/length(simulated.cluster.adjusted)
#similarity$simulated.cluster.freq <- table(simulated.cluster)/nModelsKO
similarity$simulated.cluster.freq <- simulated.cluster.freq
similarity$cluster.similarity <-
simulated.cluster.freq*log(simulated.cluster.freq/ref.cluster.freq)
similarity$KL <- sum(similarity$cluster.similarity )
if(returnData){
# similarity$dataReference <- dataReference
dataRefSamples <- colnames(dataReference)
# print(dataRefSamples)
dataRefSamples <- dataRefSamples[order(clusterCut)]
# print(dataRefSamples)
clusterCut <- clusterCut[order(clusterCut)]
similarity$refClusters <- clusterCut
#colnames(similarity$dataReference) <- clusterCut
similarity$dataReference <-
dataReference[,dataRefSamples]
#print(dim(dataReference))
# print(dim(similarity$dataReference))
similarity$dataSimulation <- dataSimulation[,which(simulated.cluster>0)]
colnames(similarity$dataSimulation) <-
simulated.cluster[which(simulated.cluster>0)]
similarity$dataSimulation <-
similarity$dataSimulation[,order(colnames(similarity$dataSimulation))]
refSimCor <- numeric()
previous.cluster.size <- 0
refSimCor.ref <- numeric()
previous.cluster.size.ref <- 0
# print(colnames(similarity$dataSimulation))
# print(clusterCut)
for(i in seq_len((nClusters+1) ))
#(length(unique(colnames(similarity$dataSimulation)))))
{
# print(i)
temp.ref <- similarity$dataReference[,which(
clusterCut==i)]
temp.sim <- similarity$dataSimulation[,which(
colnames(similarity$dataSimulation)==i)]
#similarity$simCluster <- colnames(similarity$dataSimulation)
temp.refSimCor <- cor(temp.ref,temp.sim, method = corMethod)
refSimCor <- c(refSimCor,previous.cluster.size +
sort(colMeans(temp.refSimCor),
decreasing = TRUE, index.return = TRUE)$ix)
previous.cluster.size <- previous.cluster.size + dim(temp.sim)[2]
refSimCor.ref <- c(refSimCor.ref, previous.cluster.size.ref +
sort(rowMeans(temp.refSimCor), decreasing = TRUE,
index.return = TRUE)$ix)
previous.cluster.size.ref <- previous.cluster.size.ref + dim(temp.ref)[2]
}
similarity$dataSimulation <- similarity$dataSimulation[,refSimCor]
tmp <- dataSimulation[,which(simulated.cluster == 0)]
colnames(tmp) <- rep(0, dim(tmp)[2])
similarity$dataSimulation <- cbind(similarity$dataSimulation[,refSimCor],
tmp)
colnames(similarity$dataSimulation) <- seq_len(ncol(similarity$dataSimulation))
#print(dim(similarity$dataReference))
# similarity$dataReference <- similarity$dataReference[,refSimCor.ref]
#print(dim(similarity$dataReference))
#TO DO : This invovlves repeat calculation of cor--can be optimized
# print(similarity$dataReference)
# print(similarity$dataSimulation)
similarity$simulated.refCor <- t(cor(similarity$dataReference,
similarity$dataSimulation,
method = corMethod))
}
#image(similarity$simulated.refCor, col = plot_color)
return(similarity)
}
#########################################################
# Helper functions
#########################################################
#' @title Find nth minimum value from a vector
#' @description A utility function to find the nth minimum
#' @param x the given unsorted vector
#' @param index N.
#' @return the nth minimum element of the vector
#'
.NthMin <- function(x,index) {
return (sort(x, decreasing = FALSE, partial = index)[index])
}
#############################################
.ClustFunction <- function(x){
#return (mean(x))
return (min(x))
}
#' @title Find variance of permutations
#' @description A utility function to generate permutations
#' @param simulated.refCor Correlation matrix of simulated and reference data
#' @param clusterCut The original cluster assignments
#' @param permutations The number of permutations
#' @param refClusterVar Reference Cluster Variance
#' @return An array of dimension n.models by nClusters by permutations
#'
.PermutedVar <- function(simulated.refCor, clusterCut, permutations,
refClusterVar){
nClusters <- length(unique(clusterCut))
nModelsKO <- dim(simulated.refCor)[1]
permutedVar <- array(0, c(nModelsKO, nClusters, permutations))
for(k in seq_len(permutations)){
clusterCut.permuted <- sample(clusterCut)
for(j in seq_len(nClusters))
{
cor.mat <- simulated.refCor[,which(clusterCut.permuted == j)]
for(i in seq_len(nModelsKO)){
temp.cluster.var <- (((1-cor.mat[i, ])/2)^2)
permutedVar[i,j,k] <- (mean(temp.cluster.var)/ (refClusterVar[j]))
}
}
}
return(permutedVar)
}
#############################################
#' @title Returns the variance array after permutations.
#' @description A utility function.
#' @param dataSimulation Simulation data to be compared.
#' @param dataReference Reference data with which to compare.
#' @param clusterCut The original cluster assignments.
#' @param permutations The number of permutations.
#' @param refClusterVar SD of the clusters.
#' @param corMethod Correlation method to be used.
#' @param simulatedClusterVar Variance of simulated clusters
#' @return An array of dimension n.models by nClusters by permutations.
#'
.ModelPvalue <- function(dataSimulation, dataReference, clusterCut, permutations,
refClusterVar, corMethod, simulatedClusterVar){
nClusters <- length(unique(clusterCut))
nModelsKO <- dim(dataSimulation)[2]
n.gene <- dim(dataSimulation)[1]
pValueMat <- matrix(0, nrow = nModelsKO, ncol = nClusters)
randomModels <- matrix(rep(seq_len(n.gene),permutations), n.gene, permutations)
randomModels <- apply(randomModels,2,sample)
#randomModels <- matrix(0, nrow = n.gene, ncol = permutations)
#randomModels <- t(apply(dataSimulation,1,function(x) sample(
#x, replace = TRUE, size = permutations)))
permutedRefCor <- matrix(0,nrow = permutations, ncol = dim(dataReference)[2])
permutedRefCor <- cor(randomModels, dataReference, method = corMethod)
for(j in seq_len(nClusters))
{
dist.mat <- ((1 - permutedRefCor[,which(clusterCut == j)])/2)^2
tempVector <- sort(apply(dist.mat,1,.ClustFunction))
for (i in seq_len(nModelsKO)) {
pValueMat[i,j] <- (which(abs(
tempVector - simulatedClusterVar[i,j]) ==min(abs(
tempVector - simulatedClusterVar[i,j])))[1] - 1)/permutations
#[1] as sometimes which() might satisfy for multiple values
}
}
return(pValueMat)
}
#############################################
#' @title Finds the variance corresponding to a given value.
#' @description A utility function for calculating the p values.
#' @param permutedVar An array containing the distance of clusters for
#' each model for every permutation.
#' @param pValue Cut off p vlaue.
#' @return p-values for each model.
#'
.SimulatedVarPValue <- function(permutedVar, pValue){
permutations <- dim(permutedVar)[3]
nModelsKO <- dim(permutedVar)[1]
nClusters <- dim(permutedVar)[2]
selectedIndex = as.integer(permutations*pValue)
if(selectedIndex==0) {stop("Number of permutations is not sufficient
to achieve the required pValue.
Please increase the permutations")}
#print(selectedIndex)
simulatedVarPValue <- matrix(0, nrow=nModelsKO, ncol = nClusters)
for (i in seq_len(nModelsKO)) {
for(j in seq_len(nClusters)) {
simulatedVarPValue[i,j] <- .NthMin(permutedVar[i,j,],selectedIndex)
}
}
return(simulatedVarPValue)
}
#############################################
#' @title Finds the variance corresponding to a given value.
#' @description A utility function to calculate the absolute p values.
#' @param permutedVar An array containing the distance of clusters for
#' each model for every permutation.
#' @param simulatedClusterVar Variance of simulated clusters
#' @return p-values for each model.
#'
.SimulatedPValueAbs <- function(permutedVar, simulatedClusterVar){
permutations <- dim(permutedVar)[3]
nModelsKO <- dim(permutedVar)[1]
nClusters <- dim(permutedVar)[2]
simulatedVarPValue <- matrix(0, nrow=nModelsKO, ncol = nClusters)
for (i in seq_len(nModelsKO)) {
for(j in seq_len(nClusters) ) {
tempVector <- sort(permutedVar[i,j,])
simulatedVarPValue[i,j] <- which(abs(
tempVector - simulatedClusterVar[i,j])==min(abs(
tempVector - simulatedClusterVar[i,j])))/permutations
}
}
return(simulatedVarPValue)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.