Nothing
#' @title Estimate And Plot Express And Non-express Features
#'
#' @description For each cell line, any compared two replicates
#' might have a portion of transcripts that express in one replicate
#' but not the other, depending on what cutoff is used to define
#' non-express. This function estimate and plot the proportion of
#' disagreement using multiple cutoffs. Average is used when multiple
#' two-replicate comparisons included.
#'
#' @param dat A \code{rnaseqcomp} S4 class object.
#' @param steps A numeric vector specifying log-scale cutoffs to be used
#' for calculation and plotting. (default: seq(-0.5, 12, 0.5))
#' @param Ks A numeric vector specifying which cutoffs to be highlighted
#' and to which the reported proportions to be corresponding.
#' @param pchK Plot styles of highlight points corresponding
#' to \code{Ks}. (default: seq_along(Ks) - 1)
#' @param plotcell 1 or 2 indicating which cell line
#' will be plotted. If values other than 1 and 2, both cell
#' lines will be plotted. This value won't affect estimation for both
#' cell lines. (default: 1)
#' @param ... Parameters for base function \code{plot}.
#'
#' @import RColorBrewer
#'
#' @return
#' \item{plot}{NE plots of quantification pipelines for
#' selected cell line by \code{plotcell}.}
#' \item{NE}{A list of two matrices. The first matrix gives
#' the proportion of disagreement and the second matrix gives the
#' proportion of both replicates under (non-express)
#' correspoinding cutoff \code{Ks}. Values are based on average
#' of two cell lines.}
#'
#' @export
#' @examples
#' data(simdata)
#' condInfo <- factor(simdata$samp$condition)
#' repInfo <- factor(simdata$samp$replicate)
#' evaluationFeature <- rep(TRUE, nrow(simdata$meta))
#' calibrationFeature <- simdata$meta$house & simdata$meta$chr == 'chr1'
#' unitReference <- 1
#' dat <- signalCalibrate(simdata$quant, condInfo, repInfo, evaluationFeature,
#' calibrationFeature, unitReference, calibrationFeature2 = calibrationFeature)
#' plotNE(dat)
plotNE <- function(dat, steps = seq(-0.5, 12, 0.5), Ks = 0:3,
pchK = seq_along(Ks) - 1, plotcell = 1,
...){
if(!is(dat,'rnaseqcomp'))
stop('"plotNE" only plots class "rnaseqcomp".')
para <- list(...)
if(length(para)!=0 && any(!(names(para) %in%
c("xlim","ylim","xlab","ylab","lty","lwd","main","col"))))
stop('... contains non-used arguments.')
pnelist <- list()
steps <- sort(unique(c(steps, Ks)))
for(i in 1:2){
tmp <- lapply(dat@quantData, function(x)
log2(x[, dat@condInfo == levels(dat@condInfo)[i], drop=F]))
pnelist[[i]] <- lapply(seq_along(dat@quantData), function(j){
props <- matrix(0, 2, length(steps))
count <- 0
for(m in 1:(ncol(tmp[[j]])-1))
for(n in (m+1):ncol(tmp[[j]])){
props <- props + sapply(steps, function(K){
rep1 <- tmp[[j]][, m] < K
rep2 <- tmp[[j]][, n] < K
c(sum((!rep1 & rep2) | (rep1 & !rep2)) / length(rep1),
sum(rep1 & rep2)/length(rep1))})
count <- count + 1
}
props/count
})
}
if(!('xlab' %in% names(para))) xlab <- '% of detrended logSignal below K'
else xlab <- para$xlab
if(!('ylab' %in% names(para)))
ylab <- '% of disagreement between replicates'
else ylab <- para$ylab
if(!('xlim' %in% names(para))) xlim <- c(0.3, 1)
else xlim <- para$xlim
if(!('ylim' %in% names(para))) ylim <- c(0, 0.2)
else ylim <- para$ylim
if(!('lty' %in% names(para))) lty <- 1
else lty <- para$lty
if(!('lwd' %in% names(para))) lwd <- 2
else lwd <- para$lwd
if(!('main' %in% names(para))) main <- "NE plot"
else main <- para$main
if(!('col' %in% names(para))) {
if(length(dat@quantData)<3)
col <- c("blue","orange")[seq_along(dat@quantData)]
else {
col <- brewer.pal(min(length(dat@quantData), 8), "Set2")
}
}else col <- para$col
lty <- rep_len(lty, length(dat@quantData))
col <- rep_len(col, length(dat@quantData))
idx <- match(Ks, steps)
for(i in seq_along(dat@quantData)){
if(plotcell==1){
plotx <- pnelist[[1]][[i]][2,]
ploty <- pnelist[[1]][[i]][1,]
}else if(plotcell==2){
plotx <- pnelist[[2]][[i]][2,]
ploty <- pnelist[[2]][[i]][1,]
}else{
plotx <- pnelist[[1]][[i]][2,]
ploty <- pnelist[[1]][[i]][1,]
plotx2 <- pnelist[[2]][[i]][2,]
ploty2 <- pnelist[[2]][[i]][1,]
}
if(i == 1) {
plot(plotx, ploty, type = 'l', lwd = lwd, col = col[i],
lty = lty[i], xlim = xlim, ylim = ylim,
xlab = xlab, ylab = ylab, main = main)
}else {
lines(plotx, ploty, lwd = lwd, col = col[i], lty = lty[i])
}
points(plotx[idx], ploty[idx], pch = pchK, cex = 0.6)
if(!(plotcell %in% 1:2)){
lines(plotx2, ploty2, lwd = lwd, col = col[i], lty = lty[i] + 2)
points(plotx2[idx], ploty2[idx], pch = pchK, cex = 0.6)
}
}
box()
if(plotcell %in% 1:2){
legend('topright', names(dat@quantData),
lwd = lwd, col = col, lty = lty, bty = "n", cex = 1)
}else{
cells <- levels(dat@condInfo)
legend('topright', c(names(dat@quantData), cells),
lwd = lwd, col = c(col, rep("black", length(cells))),
lty = c(lty, lty[1], lty[1] + 2), bty = "n", cex = 1)
}
legend('bottomleft', paste0("K=", Ks), pch = pchK,
bty = "n", cex = 0.8)
NEs <- lapply(pnelist, function(y)
lapply(y, function(x) {
tmp <- x[, idx]
colnames(tmp) <- Ks
rownames(tmp) <- c("y", "x")
tmp
}))
NE <- (sapply(NEs[[1]],function(x) x[1,]) +
sapply(NEs[[2]],function(x) x[1,])) / 2
NN <- (sapply(NEs[[1]],function(x) x[2,]) +
sapply(NEs[[2]],function(x) x[2,])) / 2
colnames(NE) <- colnames(NN) <- names(dat@quantData)
return(list(NE = round(NE, 3),NN = round(NN, 3)))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.