Nothing
#' Add Annotations to site-specific or region-based analysis results.
#'
#' @description Add annotations to site-specific or region-based analysis
#' results from function \code{\link{TestAssociations}}.
#'
#' @param results_df An output data frame from function
#' \code{TestAssociations}, which includes variables for locations and result
#' of statistical tests for the genomic sites or regions.
#' @param closeByRegions_gr An output GRanges object from function
#' \code{AllCloseByRegions}, defaults to \code{NULL}.
#' @param inputRegions_gr A GRanges object for input genomic
#' regions, defaults to \code{NULL}.
#' @param genome Use \code{"hg19"} or \code{"hg38"} gene reference. Defaults
#' to \code{"hg38"}.
#' @param analysis Results type. Defaults to \code{"region-based"}. When it's
#' set to \code{"site-specific"}, arguments \code{closeByRegions_gr} and
#' \code{inputRegions_gr} will not be used and set to NULL automatically.
#'
#' @return A data frame with locations of the genomic sites or regions
#' (\code{seqnames, start, end, width}), annotations for locations
#' (\code{inputRegion, closeByRegion, symbol}), test statistics
#' (\code{estimate, stdErr} or \code{coef, exp_coef, se_coef}), \code{pValue}
#' and false discovery rate (\code{fdr}).
#'
#' @importFrom GenomicRanges makeGRangesFromDataFrame
#'
#' @export
#'
#' @seealso \code{\link{TransformToGR}}, \code{\link{AllCloseByRegions}},
#' \code{\link{AllCoeditedRegions}}, \code{\link{CreateEditingTable}},
#' \code{\link{SummarizeAllRegions}}, \code{\link{TestAssociations}}
#'
#' @examples
#' data(rnaedit_df)
#'
#' # get GRanges for genes
#' genes_gr <- TransformToGR(
#' genes_char = c("PHACTR4", "CCR5", "METTL7A"),
#' type = "symbol",
#' genome = "hg19"
#' )
#'
#' # find close-by regions within the genes
#' closebyRegions_gr <- AllCloseByRegions(
#' regions_gr = genes_gr,
#' rnaEditMatrix = rnaedit_df
#' )
#'
#' # identify co-edited regions within the genes
#' coedited_gr <- AllCoeditedRegions(
#' regions_gr = closebyRegions_gr,
#' rnaEditMatrix = rnaedit_df,
#' output = "GRanges",
#' method = "spearman"
#' )
#'
#' # summarize editing levels within each gene by maximum
#' summarizedRegions_df <- SummarizeAllRegions(
#' regions_gr = coedited_gr,
#' rnaEditMatrix = rnaedit_df,
#' selectMethod = MaxSites
#' )
#'
#' exm_pheno <- readRDS(
#' system.file(
#' "extdata",
#' "pheno_df.RDS",
#' package = 'rnaEditr',
#' mustWork = TRUE
#' )
#' )
#'
#' # test summarized editing levels against survival outcome
#' results_df <- TestAssociations(
#' rnaEdit_df = summarizedRegions_df,
#' pheno_df = exm_pheno,
#' responses_char = "sample_type",
#' covariates_char = NULL,
#' respType = "binary"
#' )
#'
#' AnnotateResults(
#' results_df = results_df,
#' closeByRegions_gr = closebyRegions_gr,
#' inputRegions_gr = genes_gr,
#' genome = "hg19"
#' )
#'
AnnotateResults <- function(results_df,
closeByRegions_gr = NULL,
inputRegions_gr = NULL,
genome = c("hg38", "hg19"),
analysis = c("region-based", "site-specific")){
genome <- match.arg(genome)
analysis <- match.arg(analysis)
results_gr <- makeGRangesFromDataFrame(
df = results_df,
keep.extra.columns = TRUE
)
analysisSite_logi <- analysis == "site-specific"
nullInput_logi <- is.null(inputRegions_gr)
nullClose_logi <- is.null(closeByRegions_gr)
### Add Annotations ###
# Add inputRegion annotation if available
if (analysisSite_logi | nullInput_logi) {
addInput_gr <- results_gr
} else {
addInput_gr <- AddMetaData(
target_gr = results_gr,
annot_gr = inputRegions_gr,
annotType_char = "region",
genome = genome,
annotLabel_char = "inputRegion"
)
}
# Add closeByRegion annotation if available
if (analysisSite_logi | nullClose_logi) {
addMetaData_gr <- addInput_gr
} else {
addMetaData_gr <- AddMetaData(
target_gr = addInput_gr,
annot_gr = closeByRegions_gr,
annotType_char = "region",
genome = genome,
annotLabel_char = "closeByRegion"
)
}
# Add symbol annotation
coeditedAnno_gr <- AddMetaData(
target_gr = addMetaData_gr,
annot_gr = NULL,
annotType_char = "geneSymbol",
genome = genome,
annotLabel_char = "symbol"
)
### Wrangle Column Names ###
# Order column names of final dataset
colPre_char <- c("estimate", "stdErr")
# maybe turn this statement into a switch function once there are more
# different types of outcome estimates later
if (!(all(colPre_char %in% colnames(results_df)))) {
colPre_char <- c("coef", "exp_coef", "se_coef")
}
# Add on symbols
colPre_char <- c("symbol", colPre_char, "pValue", "fdr")
# Because the column order, if applicable, is "inputRegion" then
# "closeByRegion", we want to left-concatenate them in reverse order
if (!analysisSite_logi) {
if (!nullClose_logi) {
colPre_char <- c("closeByRegion", colPre_char)
}
if (!nullInput_logi) {
colPre_char <- c("inputRegion", colPre_char)
}
}
colOrder_char <- c("seqnames", "start", "end", "width", colPre_char)
# Organize final annotation dataframe
dat <- data.frame(coeditedAnno_gr)
dat$seqnames <- as.character(dat$seqnames)
dat[ ,colOrder_char]
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.