Nothing
## V-Measure for external cluster validation
## a conditional entropy-based evaluation measure
#a harmonic mean of the entropic homogeneity and completeness
# Rosenberg & Hirschberg 2007,
Homogeneity<-function(A){
N <- sum(A)
A<-A[,colSums(A)>0] #filter that C=0 column
#print(A)
HCK <- 0- sum(mapply(function(K)
sum(mapply(function(C)
ifelse(A[K,C]==0, 0,
(A[K,C]/N)*log(A[K,C]/sum(A[K,]),2) )
,1:ncol(A)))
,1:nrow(A)))
if(HCK==0) return(1);
HC <- 0- sum(mapply(function(C){
sum(A[,C])/N * log( sum(A[,C])/N ,2)
},1:ncol(A)))
return(1-HCK/HC)
}
Completeness <- function(A){
N <- sum(A)
A<-A[,colSums(A)>0] #filter that C=0 column
HCK <- 0- sum(mapply(function(C)
sum(mapply(function(K)
ifelse(A[K,C]==0,0,
(A[K,C]/N)*log(A[K,C]/sum(A[,C]),2) )
,1:nrow(A)))
,1:ncol(A)))
if(HCK==0) return(1);
HK <- 0- sum(mapply(function(K){ sum(A[K,])/N * log( sum(A[K,])/N ,2) },1:nrow(A)))
return(1-HCK/HK)
}
VMeasure <- function(A, beta=1){
H<-Homogeneity(A)
C<-Completeness(A)
V<-((1+beta)*H*C)/(beta*H + C)
return( ifelse(is.nan(V),0,V) )
}
#ROI is REFSEQ IDs, rows of the counts table.
#SOI is subject names; columns of the counts table.
Resampled_Significance.k<- function(GSEPD, ROI, SOI) {
D<-GSEPD$normCounts[ROI,SOI]
#scale induces a NaN if var==0
#omit that: it wont help the clustering.
rowVariation <- apply(D,1,var)
#i expect we've induced a new crash potential, when <2 rows left
keepRows <- (rowVariation>0.050)
if(sum(keepRows) < 2){
#but im not sure how to handle it.
#for now, call it a losing cluster with no segregation.
return(list(Validity=0, PV=1))
}
D<-D[rowVariation>0.050,]
D<-t(scale(t( D )))
ob<-kmeans(t(D),centers=2, nstart=4)
S1 <- names(ob$cluster[ob$cluster==1])
S2 <- names(ob$cluster[ob$cluster==2])
A <- Contingency_Matrix(GSEPD,S1,S2)
TS <- VMeasure(A)
PV <- 0
#to compute random labels we'll repeatedly ask for the number of samples
lSOI <- length(SOI) #so doing that once can be faster
sample_rate <- length(S1)/lSOI
Stepcount = pmax(round((1/GSEPD$Segregation_Precision)),2)
if(TS < 1){
TS_Range <- unlist(lapply(1:Stepcount, function(i){
RB <- runif(lSOI) < sample_rate
VMeasure(Contingency_Matrix(GSEPD,RB,!RB))
}))
PV<- mean( TS_Range >= TS )
if(PV>0 && PV<0.50){ #some were better? let's go for more precision:
TSR2 <- unlist(lapply(1:Stepcount, function(i){
RB<-runif(lSOI) < sample_rate
VMeasure(Contingency_Matrix(GSEPD,RB,!RB))
}))
TS_Range=c(TS_Range,TSR2)
PV<- mean( TS_Range >= TS )
#a third refinement for good luck
if(PV>0.01 && PV<0.10){ # let's go for more precision:
TSR2 <- unlist(lapply(1:(2*Stepcount), function(i){
RB<-runif(lSOI) < sample_rate
VMeasure(Contingency_Matrix(GSEPD,RB,!RB))
}))
TS_Range=c(TS_Range,TSR2)
PV<- mean( TS_Range >= TS )
}
}
}
return(list(Validity=TS, PV=PV))
}
Contingency_Matrix <- function(GSEPD, G1,G2){
#Group1 and Group2 are Sample names for Conditions1 and 2.
Con<-GSEPD$sampleMeta$Condition
names(Con)<-GSEPD$sampleMeta$Sample
T1 <- c(sum(Con[G1] == GSEPD$Conditions[1]), sum(Con[G1] == GSEPD$Conditions[2]))
T2 <- c(sum(Con[G2] == GSEPD$Conditions[1]), sum(Con[G2] == GSEPD$Conditions[2]))
rbind(T1,T2)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.