Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(collapse = TRUE)
## -----------------------------------------------------------------------------
# load data
file_counts <- system.file("extdata/vignette_counts.txt", package = "regsplice")
data <- read.table(file_counts, header = TRUE, sep = "\t", stringsAsFactors = FALSE)
head(data)
# extract counts, gene_IDs, and n_exons
counts <- data[, 2:7]
tbl_exons <- table(sapply(strsplit(data$exon, ":"), function(s) s[[1]]))
gene_IDs <- names(tbl_exons)
n_exons <- unname(tbl_exons)
dim(counts)
length(gene_IDs)
head(gene_IDs)
length(n_exons)
sum(n_exons)
# create condition vector
condition <- rep(c("untreated", "treated"), each = 3)
condition
## -----------------------------------------------------------------------------
library(regsplice)
rs_data <- RegspliceData(counts, gene_IDs, n_exons, condition)
rs_results <- suppressWarnings(regsplice(rs_data, seed = 123))
## -----------------------------------------------------------------------------
summaryTable(rs_results)
## -----------------------------------------------------------------------------
library(regsplice)
rs_data <- RegspliceData(counts, gene_IDs, n_exons, condition)
## -----------------------------------------------------------------------------
rs_data <- filterZeros(rs_data)
## -----------------------------------------------------------------------------
rs_data <- filterLowCounts(rs_data)
## -----------------------------------------------------------------------------
rs_data <- runNormalization(rs_data)
## -----------------------------------------------------------------------------
rs_data <- runVoom(rs_data)
# view column meta-data including normalization factors and normalized library sizes
colData(rs_data)
## -----------------------------------------------------------------------------
rs_results <- initializeResults(rs_data)
## -----------------------------------------------------------------------------
# set random seed for reproducibility
seed <- 123
# fit regularized models
rs_results <- suppressWarnings(fitRegMultiple(rs_results, rs_data, seed = seed))
# fit null models
rs_results <- fitNullMultiple(rs_results, rs_data, seed = seed)
# fit "full" models (not required if 'when_null_selected = "ones"' in next step)
rs_results <- fitFullMultiple(rs_results, rs_data, seed = seed)
## -----------------------------------------------------------------------------
rs_results <- LRTests(rs_results)
## -----------------------------------------------------------------------------
summaryTable(rs_results)
## -----------------------------------------------------------------------------
summaryTable(rs_results, n = Inf)
## -----------------------------------------------------------------------------
sum(p_adj(rs_results) < 0.05)
table(p_adj(rs_results) < 0.05)
## -----------------------------------------------------------------------------
# load true DS status labels
file_truth <- system.file("extdata/vignette_truth.txt", package = "regsplice")
data_truth <- read.table(file_truth, header = TRUE, sep = "\t", stringsAsFactors = FALSE)
str(data_truth)
# remove genes that were filtered during regsplice analysis
data_truth <- data_truth[data_truth$gene %in% gene_IDs(rs_results), ]
dim(data_truth)
length(gene_IDs(rs_results))
# number of true DS genes in simulated data set
sum(data_truth$ds_status == 1)
table(data_truth$ds_status)
# contingency table comparing true and predicted DS status for each gene
# (significance threshold: FDR < 0.05)
table(true = data_truth$ds_status, predicted = p_adj(rs_results) < 0.05)
# increasing the threshold detects more genes, at the expense of more false positives
table(true = data_truth$ds_status, predicted = p_adj(rs_results) < 0.99)
## -----------------------------------------------------------------------------
# gene with 3 exons
# 4 biological samples; 2 samples in each of 2 conditions
design_example <- createDesignMatrix(condition = rep(c(0, 1), each = 2), n_exons = 3)
design_example
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.