Description Usage Arguments Details Value See Also Examples
View source: R/fitting_functions_multiple_genes.R
Model fitting functions for regsplice
package.
1 2 3 4 5 6 7 8 9 10 11 12 | fitRegMultiple(
rs_results,
rs_data,
alpha = 1,
lambda_choice = c("lambda.min", "lambda.1se"),
seed = NULL,
...
)
fitNullMultiple(rs_results, rs_data, seed = NULL, ...)
fitFullMultiple(rs_results, rs_data, seed = NULL, ...)
|
rs_results |
|
rs_data |
|
alpha |
Elastic net parameter |
lambda_choice |
Parameter to select which optimal |
seed |
Random seed (integer). Default is NULL. Provide an integer value to set the random seed for reproducible results. |
... |
Other arguments to pass to |
There are three model fitting functions:
fitRegMultiple
fits regularized (lasso) models containing an optimal subset of
exon:condition interaction terms for each gene. The model fitting procedure penalizes
the interaction terms only, so that the main effect terms for exons and samples are
always included. This ensures that the null model is nested, allowing likelihood ratio
tests to be calculated.
fitNullMultiple
fits the null models, which do not contain any interaction
terms.
fitFullMultiple
fits full models, which contain all exon:condition interaction
terms for each gene.
See createDesignMatrix
for more details about the terms in each model.
The fitting functions fit models for all genes in the data set.
A random seed can be provided with the seed
argument, to generate reproducible
results.
If the rs_data
object does not contain a weights matrix, all exon bins are
weighted equally.
Previous step: Initialize RegspliceResults
object with
initializeResults
.
Next step: Calculate likelihood ratio tests with LRTests
.
Returns a RegspliceResults
object containing deviance and
degrees of freedom of the fitted models. See RegspliceResults
for details.
createDesignMatrix
RegspliceResults
initializeResults
LRTests
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | file_counts <- system.file("extdata/vignette_counts.txt", package = "regsplice")
data <- read.table(file_counts, header = TRUE, sep = "\t", stringsAsFactors = FALSE)
head(data)
counts <- data[, 2:7]
tbl_exons <- table(sapply(strsplit(data$exon, ":"), function(s) s[[1]]))
gene_IDs <- names(tbl_exons)
n_exons <- unname(tbl_exons)
condition <- rep(c("untreated", "treated"), each = 3)
rs_data <- RegspliceData(counts, gene_IDs, n_exons, condition)
rs_data <- filterZeros(rs_data)
rs_data <- filterLowCounts(rs_data)
rs_data <- runNormalization(rs_data)
rs_data <- runVoom(rs_data)
rs_results <- initializeResults(rs_data)
rs_results <- fitRegMultiple(rs_results, rs_data)
rs_results <- fitNullMultiple(rs_results, rs_data)
rs_results <- fitFullMultiple(rs_results, rs_data)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.