Nothing
#' Randomize Regions
#'
#' @description
#' Given a set of regions A and a genome, this function returns a new set of regions randomly distributted in the genome.
#'
#' @details
#' The new set of regions will be created with the same sizes of the original ones, and optionally placed in the same chromosomes.
#'
#' In addition, they can be made explicitly non overlapping and a mask can be provided so no regions fall in an undesirable part of the genome.
#'
#' @note randomizeRegions assumes that chromosomes start at base 1. If a
#' chromosome starts at another base number, for example at base 1000, random
#' regions might appear in the [1:1000] interval. This should not affect most
#' uses of randomizeRegions, but might be important in some advanced analysis
#' involving artificially contructed genomes.
#'
#' @usage
#' randomizeRegions(A, genome="hg19", mask=NULL, allow.overlaps=TRUE, per.chromosome=FALSE, ...)
#'
#' @param A The set of regions to randomize. A region set in any of the accepted formats by \code{\link{toGRanges}} (\code{\link{GenomicRanges}}, \code{\link{data.frame}}, etc...)
#' @param genome The reference genome to use. A valid genome object. Either a \code{\link{GenomicRanges}} or \code{\link{data.frame}} containing one region per whole chromosome or a character uniquely identifying a genome in \code{\link{BSgenome}} (e.g. "hg19", "mm10",... but not "hg"). Internally it uses \code{\link{getGenomeAndMask}}.
#' @param mask The set of regions specifying where a random region can not be (centromeres, repetitive regions, unmappable regions...). A region set in any of the accepted formats by \code{\link{toGRanges}} (\code{\link{GenomicRanges}},\code{\link{data.frame}}, ...). If \code{\link{NULL}} it will try to derive a mask from the genome (currently only works if the genome is a character string). If \code{\link{NA}} it gives, explicitly, an empty mask.
#' @param allow.overlaps A boolean stating whether the random regions can overlap (FALSE) or not (TRUE).
#' @param per.chromosome Boolean. If TRUE, the regions will be created in a per chromosome maner -every region in A will be moved into a random position at the same chromosome where it was originally-.
#' @param ... further arguments to be passed to or from methods.
#'
#'
#' @return
#' It returns a \code{\link{GenomicRanges}} object with the regions resulting from the randomization process.
#'
#' @seealso \code{\link{toDataframe}}, \code{\link{toGRanges}}, \code{\link{getGenome}}, \code{\link{getMask}}, \code{\link{getGenomeAndMask}}, \code{\link{characterToBSGenome}}, \code{\link{maskFromBSGenome}}, \code{\link{resampleRegions}}, \code{\link{createRandomRegions}}, \code{\link{circularRandomizeRegions}}
#'
#' @examples
#' A <- data.frame("chr1", c(1, 10, 20, 30), c(12, 13, 28, 40))
#'
#' mask <- data.frame("chr1", c(20000000, 100000000), c(22000000, 130000000))
#'
#' genome <- data.frame(c("chr1", "chr2"), c(1, 1), c(180000000, 20000000))
#'
#' randomizeRegions(A)
#'
#' randomizeRegions(A, genome=genome, mask=mask, per.chromosome=TRUE, allow.overlaps=FALSE)
#'
#' @export randomizeRegions
#'
#' @importFrom IRanges IRanges
#' @importFrom stats setNames
randomizeRegions <- function(A, genome="hg19", mask=NULL, allow.overlaps=TRUE, per.chromosome=FALSE, ...) {
if(!hasArg(A)) stop("A is missing")
if(!is.logical(allow.overlaps)) stop("allow.overlaps must be logical")
if(!is.logical(per.chromosome)) stop("per.chromosome must be logical")
A <- toGRanges(A)
if(any(end(A) < start(A))) {
stop("There are regions with negative width. Start must always be smaller than end.")
}
#The randomization of an empty region set, is an empty region set
if(length(A)==0) {
return(A)
}
#Prepare the genome and mask
gam <- getGenomeAndMask(genome=genome, mask=mask)
genome <- gam$genome
mask <- gam$mask
#If per.chromosome, split by chromosomes and recall ourselves recursively
if(per.chromosome == TRUE) {
#Check if there's any chromosome in A not in the genome
missing.chrs <- setdiff(levels(seqnames(A)), levels(seqnames(genome)))
if(length(missing.chrs > 0)) {
stop(paste("The chromosomes **", paste(missing.chrs, sep=", "), "** of A are not present in the genome. It is not possible to use \"per.chromosome\" with this dataset.", sep=""))
}
#Split the regions in A per chromosomes and create the random regions separately per each one
random.regions <- copySeqLevels(to=GRanges(), from=genome)
for(chr in seqlevels(A)) { #TODO: Should we change it to an apply and possibly parallelize?
chr.A <- A[seqnames(A)==chr]
if(length(chr.A)>0) {
chr.genome <- genome[seqnames(genome)==chr]
chr.mask <- mask[seqnames(mask)==chr]
new.regions <- randomizeRegions(chr.A, chr.genome, chr.mask, per.chromosome=FALSE, allow.overlaps=allow.overlaps)
random.regions <- c(random.regions, new.regions)
}
}
return(random.regions)
}
#Else, If we are here, per.chromosome==FALSE. Place all the regions
#We have three different algorithms,
# 1 - a fast but not guaranteed to completely suceed
# 2 - a linear one that does not account for overlaps between regions
# 3 - a quadratic, that produces non-overlapping regions
# 1 - FAST ALGORITHM
#To place the regions, start with the fastest one, and then, if necessary, finish the work
# with the slower ones
A <- copySeqLevels(to=A, from=genome)
ntimes <- 0
random.regions <- setNames(A[0], NULL)
#NOTE: setNames is important. When later c'ing this GR with random.regs
# (which has names(random.regs)==NULL), all names will be ""
pending <- A
#TODO: Adjust these parameters
while(ntimes < 10) {
orig.pending.len <- length(pending)
#print(paste0("pending regions: ", orig.pending.len))
rand.reg.list <- randomizeFastWithNoOverlappingControl(pending, genome=genome, mask=mask, ...)
tt <- do.call(rbind, rand.reg.list[!is.na(rand.reg.list)])
random.regs <- GRanges(seqnames=as.character(tt[,1]), ranges=IRanges::IRanges(start=as.numeric(tt[,2]), end=as.numeric(tt[,3])))
random.regs <- copySeqLevels(to=random.regs, from=genome)
pend <- pending[is.na(rand.reg.list)] #if there is any NA in rand.reg.list, these are pending regions for which we have not a valid random place
if(allow.overlaps==FALSE) { #In addition, if overlapping regions are not allowed, any overlapping region needs to be replaced
rr <- removeOverlapping(random.regs)
random.regs <- rr$rs
pend <- c(pend, rr$overlapping, ignore.mcols=TRUE)
}
random.regions <- c(random.regions, random.regs, ignore.mcols=TRUE)
pending <- pend
if(length(pending)==0) {
return(random.regions)
} else { #Update and continue
if(allow.overlaps==FALSE) {
mask <- c(mask, copySeqLevels(to=random.regions, from=genome), ignore.mcols=TRUE)
}
ntimes <- ntimes + 1
if(length(pending)>orig.pending.len*0.7) { #if we placed less than a third of the regions, move to the slower algorithms
ntimes <- 99 #break
}
}
}
# --------------------------------------------------------------------------------
# 2 - SLOWER ALGORITHM
#At this point, random.regs contain the already placed regions and pending those not yet placed
#It's time to call the slower algorithms to place the remaining regions.
if(allow.overlaps==TRUE) { #simply pass to the actual function
random.regions <- c(random.regions, private_randomizeRegions(A=pending, genome=genome, mask=mask, allow.overlaps=TRUE,...), ignore.mcols=TRUE)
return(random.regions)
} else {
#add the already placed regions to the mask (so there's no overlap)
mask <- c(mask, copySeqLevels(to=random.regions, from=genome), ignore.mcols=TRUE)
#Create a set of POSSIBLY OVERLAPPING regions first and then remove the overlapping ones
ntimes <- 0
#TODO: Adjust these parameters
while(ntimes < 10 && length(pending)>100) {
pending.len <- length(pending)
#Create a set of regions allowing overlaps
ran.regs <- private_randomizeRegions(A=pending, genome=genome, mask=mask, allow.overlaps=TRUE, ...)
rr <- removeOverlapping(rs=ran.regs)
random.regions <- c(random.regions, rr$rs, ignore.mcols=TRUE) #add the newly placed regions to the final GRanges
pending <- rr$overlapping
ntimes <- ntimes + 1
}
if(length(pending)==0) { #if all regions have been placed, return
return(random.regions)
} else {
#Launch the quadratic algorithm
ran.regs <- private_randomizeRegions(A=pending, genome=genome, mask=mask, allow.overlaps=FALSE, ...)
return(c(random.regions, ran.regs, ignore.mcols=TRUE))
}
}
warning("We should not reach this point (end of randomizeRegions), this is a bug")
return(NA)
}
#This is by far the fastest implementation we have of randomize regions.
#However, it does not contron for overlaps and is not guaranteed to return a complete
#set of regions (some of them might not be randomized)
randomizeFastWithNoOverlappingControl <- function(A, genome, mask, max.retries=5, ...) {
gam <- getGenomeAndMask(genome=genome, mask=mask)
genome <- toDataframe(genome)
genome$chr <- as.character(genome$chr)
mask.chr <- as.character(seqnames(mask))
mask.start <- start(mask)
mask.end <- end(mask)
#Prepare chromsome lengths
chrs <- as.numeric(genome$end)
chrs <- cumsum(chrs)
genome.length <- chrs[length(chrs)]
#This function gets region width and creates a random region in the genome.
#If the region is valid (does not span between chromosomes and does not overlap the mask), returns the region
#else, if it's not valid, it return NA
getValidReg <- function(reg.width) {
#Get a random position on the whole genome
reg.start <- round(runif(1)*(genome.length - reg.width))
num.chr.start <- which(chrs >= reg.start)[1] #We can be sure al least one will be >= than pos
num.chr.end <- which(chrs >= reg.start+reg.width)[1] #We can be sure al least one will be >= than pos
if(num.chr.start != num.chr.end) {
return(NA)
}
if(num.chr.start>1) reg.start <- reg.start - chrs[num.chr.start-1]
reg.end <- reg.start + reg.width
chr <- genome[num.chr.start, 1]
#Does it overlap with any of the masked regions?
if(any(mask.chr == chr & mask.start < reg.end & mask.end > reg.start )) {
return(NA)
}
return(list(chr=chr, start=reg.start, end=reg.end))
}
reg.widths <- width(A) - 1
#Create a set of valid random of regions. For some regions it might succeed, and for others it will be NA
rand.reg.list <- lapply(reg.widths, getValidReg)
#While there are still NAs (and for max retries), try to recreate them
retries <- 0
nas <- which(is.na(rand.reg.list))
while(length(nas)>0 & retries < max.retries) {
rand.reg.list[nas] <- lapply(reg.widths[nas], getValidReg)
retries <- retries + 1
nas <- which(is.na(rand.reg.list))
}
return(rand.reg.list) #WARNING! This list might contain NAs for regions not randomly placed!
}
#This function creates the random regions in the valid regions and it's capable of taking into account
#the overlap with other regions
private_randomizeRegions <- function(A, genome, mask, allow.overlaps=TRUE, max.retries=5, ...) {
if(length(A)<1) {
return(A)
}
#use subtractRegions to get the masked genome
valid.regions <- toDataframe(subtractRegions(genome, mask))[,c(1,2,3)]
valid.regions[,1] <- as.character(valid.regions[,1])
names(valid.regions) <- c("chr", "start", "end")
#Convenience function to map back the position in the vector of valid positions to the original regions
map.back <- function(pos) {
num.region <- which(len.valid >= pos & len.valid != 0)[1] #We can be sure al least one len.valid will be >= than pos
if(num.region>1) pos <- pos - len.valid[num.region-1]
#start <- data.frame(chr=valid.regions[num.region, 1], start=valid.regions[num.region, 2]+pos)
#new.pos <- data.frame(chr=as.character(seqnames(valid.regions)[num.region]), start=start(valid.regions)[num.region]+pos)
new.pos <- list(num.region=num.region, chr=as.character(valid.regions[num.region, 1]), start=valid.regions[num.region, 2]+pos)
return(new.pos)
}
#TODO: Should we really retry? or just giveup immediately?
#Set up a retry system in case the region set does not fit into the genome with a given configuration
original.valid.regions <- valid.regions
for(ntry in 1:max.retries) {
#reset the valid.regions
valid.regions <- original.valid.regions
#TODO: Sort from largest to smallest to improve the probability of finding a place for all regions in highly fragmented genomes
failed <- FALSE
first <- TRUE
#Bernat
new.chr <- new.start <- new.end <- c()
for(i in 1:length(A)) {
len <- width(A)[i] - 1
#CHECK: a -1 is not necessary when using the dataframe fr valid.regions
len.valid <- valid.regions[,3]-valid.regions[,2] - len -1 #The region cannot start in the last len positions of the valid region. It would not fit
#len.valid <- width(valid.regions) - len - 1 #The region cannot start in the last len positions of the valid region. It would not fit
len.valid[len.valid<0] <- 0
if(length(len.valid)>1) {
for(j in 2:length(len.valid)) {
len.valid[j] <- len.valid[j] + len.valid[j-1]
#print(paste(j,len.valid[j]))
}
}
if(max(len.valid)==0) { #If theres no space left to put this region, stop this try
failed = TRUE
break
}
rand.num <- round(runif(1)*len.valid[length(len.valid)])
new.pos <- map.back(rand.num)
#New without dataframe
new.chr <- c(new.chr, new.pos[["chr"]])
new.start <- c(new.start, new.pos[["start"]])
new.end <- c(new.end, new.pos[["start"]] + len)
#Finally, if non overlapping regions are required, remove the last region from the valid regions set
#Note: the non overlapping processing changes the order of the regions, but that does not have any impact on the randomness
if(allow.overlaps==FALSE) {
#Substitute the current region (old, num.region) by two new ones, substracting the new random region just created
old.end <- valid.regions[new.pos[["num.region"]],]
old.end[1,"start"] <- new.pos[["start"]]+len+1
valid.regions[new.pos[["num.region"]], "end"] <- new.pos[["start"]]-1
valid.regions <- rbind(valid.regions, old.end)
#If the newly created region was at the exact start position or end position of a valid region, this will create a valid region with size -1. Remove them
#TODO: we could check this condition before instead of creating and removing.
negative.lengths <- (valid.regions[,"end"]-valid.regions[,"start"])<0
if(any(negative.lengths)) {
valid.regions <- valid.regions[-negative.lengths,]
}
}
}
if(!failed) {
random.regions <- toGRanges(data.frame(chr=new.chr, start=new.start, end=new.end))
random.regions <- copySeqLevels(to=random.regions, from=genome)
return(random.regions)
} else {
warning("It was not possible to create the random region set because there was no space available. Retrying.")
}
}
#If are here, all the retries have failed to produce a valid region set. Raise an error and stop.
stop(paste("It was not possible to create a valid random region set after ", max.retries, " retries. This might be due to the regions in A covering most of the available genome. Allowing overlapping random regions could solve this problem.", sep=""))
}
#helper functions
copySeqLevels <- function(to, from) {
seqlevels(to)<-seqlevels(from)
levels(seqnames(to))<-seqlevels(from)
return(to)
}
#Detect the overlaps between different regions in rs and remove the from the rs
removeOverlapping <- function(rs) {
ff <- findOverlaps(rs, rs)
overlapping.regs <- unique(queryHits(ff)[((queryHits(ff) - subjectHits(ff)) != 0)]) #which region overlaps any region that is not itself?
#and move them from random.regs to pending
if(length(overlapping.regs)>0) {
pending <- rs[overlapping.regs]
rs <- rs[-overlapping.regs]
} else {
pending <- rs[0]
}
return(list(rs=rs, overlapping=pending))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.