Nothing
#splitBySeqname <- function(gr,rc=NULL) {
# #message("Splitting input regions by seqname...")
# grList <- cmclapply(levels(seqnames(gr)),function(x,lib) {
# #message(" ",x)
# tmp <- lib[seqnames(lib)==x]
# if (length(tmp)>0) return(tmp) else return(NULL)
# },gr,rc=rc)
# names(grList) <- levels(seqnames(gr))
# null <- which(sapply(grList,is.null))
# if (length(null)>0)
# grList <- grList[-null]
# return(grList)
#}
contVector <- function(x,size=NULL,flank=NULL,where=NULL) {
if (!is.null(flank)) {
switch(where,
upstream = {
size <- flank[1]
if (is(x,"Rle") && !is.na(runValue(x)))
x <- x[1:flank[1]]
else
return(rep(0,size))
},
downstream = {
size <- flank[2]
if (is(x,"Rle") && !is.na(runValue(x)))
x <- x[(length(x)-flank[2]+1):length(x)]
else
return(rep(0,size))
}
)
}
else {
if (!is(x,"Rle") || all(is.na(runValue(x))))
return(rep(0,size))
}
return(as.numeric(x))
}
splitVector <- function(x,n,flank,where,interp,stat) {
isRle <- ifelse(is(x,"Rle"),TRUE,FALSE)
if (!is.null(flank)) {
switch(where,
center = {
if (is(x,"Rle") && all(!is.na(runValue(x))))
x <- x[(flank[1]+1):(length(x)-flank[2])]
else
return(rep(0,n))
},
upstream = {
if (is(x,"Rle") && all(!is.na(runValue(x))))
x <- x[1:flank[1]]
else
return(rep(0,n))
},
downstream = {
if (is(x,"Rle") && all(!is.na(runValue(x))))
x <- x[(length(x)-flank[2]+1):length(x)]
else
return(rep(0,n))
}
)
}
else {
if (!is(x,"Rle") || all(is.na(runValue(x))))
return(rep(0,n))
}
if (length(x)<n) {
if (isRle)
x <- as.numeric(x)
x <- interpolateSignal(x,n,interp)
if (isRle)
x <- Rle(x)
}
binSize <- floor(length(x)/n)
dif <- length(x) - binSize*n
binFac <- rep(binSize,n)
# Random bin increase size to avoid problems
add <- sample(1:n,dif)
binFac[add] <- binFac[add]+1
f <- factor(rep(1:n,binFac))
#S <- split(x,f)
#return(llply(S,stat))
S <- split(1:length(x),f)
s <- vapply(S,function(x) x[1],integer(1))
return(aggregate(x,FUN=stat,start=s,width=binFac))
}
interpolateSignal <- function(x,n,interp) {
switch(interp,
auto = {
d <- (n-length(x))/n
if (d < 0.2) { # Then quite safe for neighborhood method
y <- rep(NA,n)
y[1:2] <- x[1:2]
y[(n-1):n] <- x[(length(x)-1):length(x)]
orig.pos <- sort(sample(3:(n-2),length(x)-4))
y[orig.pos] <- x[3:(length(x)-2)]
na <- which(is.na(y))
avinds <- lapply(na,function(z) {
return(c(z-2,z-1,z+1,z+2))
})
xx <- unlist(lapply(avinds,function(ii,yy) {
return(mean(yy[ii],na.rm=TRUE))
},y))
y[na] <- xx
x <- y
}
else { # Spline is the safest
x <- spline(x,n=n)$y
x[x<0] <- 0
}
},
spline = {
x <- spline(x,n=n)$y
x[x<0] <- 0
},
linear = {
x <- approx(x,n=n)$y
x[x<0] <- 0
},
neighborhood = {
y <- rep(NA,n)
y[1:2] <- x[1:2]
y[(n-1):n] <- x[(length(x)-1):length(x)]
orig.pos <- sort(sample(3:(n-2),length(x)-4))
y[orig.pos] <- x[3:(length(x)-2)]
na <- which(is.na(y))
avinds <- lapply(na,function(z) {
return(c(z-2,z-1,z+1,z+2))
})
xx <- unlist(lapply(avinds,function(ii,yy) {
return(mean(yy[ii],na.rm=TRUE))
},y))
y[na] <- xx
x <- y
}
)
return(x)
}
covLengthsEqual <- function(rl) {
if (is(rl,"RleList") || is(rl,"list"))
len <- lengths(rl)
else if (is(rl,"GRanges"))
len <- width(rl)
else if (is(rl,"GRangesList"))
len <- vapply(width(rl),sum,integer(1))
z <- which(len==1)
if (length(z)>0)
len <- len[-z]
return(ifelse(all(len==len[1]),TRUE,FALSE))
}
readConfig <- function(input) {
if (missing(input) || !file.exists(input))
stop("File to read sample info from should be a valid existing text ",
"file!")
tab <- read.delim(input)
if (is.null(tab$id))
stop("Sample id column not found in ",input,"!")
if (is.null(tab$file))
stop("Sample file path column not found in ",input,"!")
if (is.null(tab$format))
stop("Sample file format column not found in ",input,"!")
samples <- as.character(tab$id)
if (length(samples) != length(unique(samples)))
stop("Sample identifiers must be unique for each sample!")
if (length(grep(" ",samples))>0)
stop("White space is not allowed in sample ids!")
if (is.null(tab$name))
nams <- as.character(tab$name)
else
nams <- samples
files <- as.character(tab$file)
if (any(!file.exists(files))) {
bi <- which(!file.exists(files))
stop("Input file ",files[bi]," does not exist! Please check paths...")
}
formats <- as.character(tab$format)
if (!all(formats %in% c("bam","bed","bigwig")))
stop("Input formats must be one of \"bam\", \"bed\", \"bigwig\"")
cls <- NULL
if (!is.null(tab$color)) {
cls <- as.character(tab$color)
chkcls <- areColors(cls)
if (!all(chkcls)) {
warning("Invalid colors found in color column in config file ",
input,"! Will use automatic colors...")
cls <- NULL
}
}
output <- vector("list",nrow(tab))
for (i in 1:nrow(tab)) {
output[[i]]$id <- samples[i]
output[[i]]$name <- nams[i]
output[[i]]$file <- files[i]
output[[i]]$format <- formats[i]
output[[i]]$color <- cls[i]
output[[i]]$ranges <- NULL
output[[i]]$coverage <- NULL
output[[i]]$profile <- NULL
}
names(output) <- samples
return(output)
}
kmeansDesign <- function(input,design=NULL,kmParams) {
if (missing(kmParams)) {
if (!is.null(input$data))
kmParams <- getr(input,"kmParams")
else
kmParams <- getDefaultListArgs("kmParams")
}
else {
kmParamsDefault <- getDefaultListArgs("kmParams")
kmParams <- setArg(kmParamsDefault,kmParams)
kmParams <- validateListArgs("kmParams",kmParams)
}
if (!is.null(input$data)) # Fed with recoup object
input <- input$data
hasProfile <- vapply(input,function(x) is.null(x$profile),logical(1))
if (any(hasProfile))
stop("Profile matrices for k-means clustering are missing from the ",
"input object. Have you called the profileMatrix function?")
if (kmParams$k>0) {
if (is.null(kmParams$reference)) {
# Merge matrices to one and perform k-means. As normally coverages
# are normalized (the user is responsible to tell recoup how to do
# this and has been done at this point), we are legalized to do that
message("Performing k-means (k=",kmParams$k,") clustering on ",
"total profiles")
theBigMatrix <- do.call("cbind",lapply(input,function(x) {
return(as.matrix(x$profile))
}))
kcl <- kmeans(theBigMatrix,centers=kmParams$k,
iter.max=kmParams$iterMax,nstart=kmParams$nstart,
algorithm=kmParams$algorithm)
}
else {
message("Performing k-means (k=",kmParams$k,") clustering using ",
"the ",input[[kmParams$reference]]$name," sample profile as ",
"reference")
#set.seed(kmParams$seed)
kcl <- kmeans(input[[kmParams$reference]]$profile,
centers=kmParams$k,iter.max=kmParams$iterMax,
nstart=kmParams$nstart,algorithm=kmParams$algorithm)
}
kmorder <- kcl$cluster
#names(kmorder) <- rownames(input[[1]]$profile)
if (!is.null(design)) {
kmorder <- kmorder[rownames(design)]
card <- table(kmorder)[kmorder]
design$kcluster <- as.factor(paste("Cluster ",kmorder," (",card,
")",sep=""))
}
else {
card <- table(kmorder)[kmorder]
design <- data.frame(kcluster=paste("Cluster ",kmorder," (",card,
")",sep=""))
rownames(design) <- names(kmorder)
}
}
return(design)
}
# Experimental! Not working properly at the moment.
# In the final version, the design variable should be replaced by an "obj"
# variable. The obj can be a recoup list object (with design stored) or a design
# data frame
reorderClusters <- function(design,newOrder) {
# Check if newOrder is numeric
if (!is.numeric(newOrder))
stop("newOrder must be numeric")
# Check if design is a data frame
if (!is.data.frame(design))
stop("design must be a recoup design data frame!")
# Check if design is a proper clutering design
if (!("kcluster" %in% names(design)))
stop("design must hold clustering information! Are you sure you run ",
"kmeansDesign first?")
# Check correct number of clusters in new order
if (length(newOrder) != length(unique(as.character(design$kcluster))))
stop("The number of clusters in the new order vector does not match ",
"with the existing one!")
# Do job
cur <- as.character(design$kcluster)
# They are of the form Cluster X (YYY)
spl <- strsplit(cur," ")
num <- as.numeric(vapply(spl,function(x) return(x[2]),character(1)))
# Before going furher, check that newOrder contains the same clusters
unum <- unique(num)
poff <- intersect(unum,newOrder)
if (length(poff) != length(unique(num)))
stop("The provided clusters are not the same as in design! Cluster ",
setdiff(newOrder,unum)," not found in design.")
# Proceed
car <- vapply(spl,function(x) return(x[3]),character(1))
names(newOrder) <- 1:length(newOrder)
# Finally, reorder
newClus <- num
for (i in unum)
newClus[num==i] <- newOrder[as.character(i)]
design$kcluster <- paste("Cluster",newClus,car)
return(design)
}
sliceObj <- function(obj,i=NULL,j=NULL,k=NULL,dropPlots=FALSE,rc=NULL) {
if (is.null(obj$data))
stop("No data slot found in obj! Are you sure it's an output from",
"recoup?")
if (!is.null(obj$callopts$selector))
obj$callopts$selector <- NULL
if (!is.null(i)) {
if (!is.numeric(i) && !is.character(i))
stop("Horizontal indexing must be numeric or character!")
for (s in 1:length(obj$data)) {
if (!is.null(obj$data[[s]]$coverage))
obj$data[[s]]$coverage <- obj$data[[s]]$coverage[i]
if (!is.null(obj$data[[s]]$profile))
obj$data[[s]]$profile <- obj$data[[s]]$profile[i,,drop=FALSE]
}
if (!is.null(obj$design))
obj$design <- obj$design[i,,drop=FALSE]
}
if (!is.null(j)) {
if (!is.numeric(j))
stop("Vertical indexing must be numeric!")
n <- ncol(obj$data[[1]]$profile)
if (obj$callopts$region %in% c("tss","tes")
|| obj$callopts$customIsBase) {
if (obj$callopts$binParams$regionBinSize==0)
obj$callopts$flank <- c(min(j),n-max(j))
else {
f <- obj$callopts$flank/obj$callopts$binParams$regionBinSize
obj$callopts$flank <- c(round(min(j)*f[1]),
round((n-max(j))*f[2]))
}
}
else {
if (obj$callopts$binParams$flankBinSize==0) {
if (min(j)<obj$callopts$flank[1])
obj$callopts$flank[1] <- min(j)
else
obj$callopts$flank[1] <- 0
if ((n-max(j))<obj$callopts$flank[2])
obj$callopts$flank[2] <- n-max(j)
else
obj$callopts$flank[2] <- 0
}
else {
flankSpace <- 2*obj$callopts$binParams$flankBinSize
oFlank <- obj$callopts$flank
r <- obj$callopts$flank/sum(obj$callopts$flank)
original.start.index <- round(r[1]*flankSpace)
original.end.index <- round(n - r[2]*flankSpace)
nonZeroFlank <- FALSE
if (min(j)<original.start.index) {
obj$callopts$flank[1] <-
round((original.start.index - min(j))*
obj$callopts$flank[1]/original.start.index)
nonZeroFlank <- TRUE
}
else
obj$callopts$flank[1] <- 0
if (max(j)>original.end.index) {
obj$callopts$flank[2] <-
round((max(j) - original.end.index)*
obj$callopts$flank[2]/(n - original.end.index))
nonZeroFlank <- TRUE
}
else
obj$callopts$flank[2] <- 0
if (nonZeroFlank)
obj$callopts$binParams$flankBinSize <- round(0.5*flankSpace*
sum(obj$callopts$flank)/sum(oFlank))
obj$callopts$binParams$forcedBinSize[1] <-
obj$callopts$binParams$flankBinSize
if (all(obj$callopts$flank==0))
obj$callopts$region <- "custom"
}
}
for (s in 1:length(obj$data)) {
if (!is.null(obj$data[[s]]$profile))
obj$data[[s]]$profile <- obj$data[[s]]$profile[,j,drop=FALSE]
}
}
if (!is.null(k)) {
if (!is.numeric(k) && !is.character(k))
stop("Sample indexing must be numeric or character!")
obj$data <- obj$data[k]
}
if (dropPlots)
obj$plots <- list(profile=NULL,heatmap=NULL,correlation=NULL)
else {
message("Recalculating profile plots after slicing...")
if (obj$callopts$plotParams$profile) {
message(" profile")
obj <- recoupProfile(obj,rc=rc)
}
if (obj$callopts$plotParams$heatmap) {
message(" heatmap")
obj <- recoupHeatmap(obj,rc=rc)
}
if (obj$callopts$plotParams$correlation) {
message(" correlation")
obj <- recoupCorrelation(obj,rc=rc)
}
}
return(obj)
}
# TODO: Check if the inputs have no names and work with indices
# TODO: Check the callopts one by one. For example, there is the risk of
# different organisms if we don't check for "organism".
# TODO: Recalculate plots after merge
mergeRuns <- function(...,withDesign=c("auto","drop"),dropPlots=TRUE) {
tmp <- list(...)
withDesign <- tolower(withDesign[1])
# Initialize new object
merged <- list()
# Check design
if (withDesign == "auto") {
allHaveDesign <-
all(vapply(tmp,function(x) !is.null(x$design),logical(1)))
whichDesign <- vapply(tmp,function(x) is.null(x$design),logical(1))
oneHasDesign <- ifelse(length(which(!whichDesign))==1,TRUE,FALSE)
noneHasDesign <- all(whichDesign)
if (noneHasDesign)
merged$design <- NULL
if (allHaveDesign) {
tryCatch({
# Will fail if some design has different number of columns
test1 <-
do.call("rbind",lapply(tmp,function(x) return(x$design)))
# Will fail if some design has different number of rows
test2 <-
do.call("cbind",lapply(tmp,function(x) return(x$design)))
# Will fail if some design has different row names
n1 <- sort(Reduce("intersect",
lapply(tmp,function(x) return(rownames(x$design)))))
n2 <- sort(rownames(tmp[[1]]$design))
if (!identical(n1,n2))
stop("Incompatible row names")
# Will fail if some design has different column names
n1 <- sort(Reduce("intersect",
lapply(tmp,function(x) return(colnames(x$design)))))
n2 <- sort(colnames(tmp[[1]]$design))
if (!identical(n1,n2))
stop("Incompatible column names")
# If nothing fails, then assign the design to the new object
merged$design <- tmp[[1]]$design
},error=function(e) {
warning("Caught incompatible designs! Dropping design...",
immediate.=TRUE)
message("----------")
print(e)
message("----------")
merged$design <- NULL
},
finally="")
}
if (oneHasDesign) # Apply to all
merged$design <- tmp[[which(whichDesign)]]$design
# Some have design...
if (!noneHasDesign && !allHaveDesign && !oneHasDesign) {
# Gather them
designs <- lapply(tmp,function(x) {
if (!is.null(x$design))
return(x$design)
else
return(NULL)
})
# ...and repeat the previous pattern
tryCatch({
# Will fail if some design has different number of columns
test1 <- do.call("rbind",designs)
# Will fail if some design has different number of rows
test2 <- do.call("cbind",designs)
# Will fail if some design has different row names
n1 <- sort(Reduce("intersect",
lapply(designs,function(x) return(rownames(x)))))
n2 <- sort(rownames(designs[[1]]))
if (!identical(n1,n2))
stop("Incompatible row names")
# Will fail if some design has different column names
n1 <- sort(Reduce("intersect",
lapply(designs,function(x) return(colnames(x)))))
n2 <- sort(colnames(designs[[1]]))
if (!identical(n1,n2))
stop("Incompatible column names")
# If nothing fails, then assign the design to the new object
merged$design <- designs[[1]]
},error=function(e) {
warning("Caught incompatible designs! Dropping design...",
immediate.=TRUE)
message("----------")
print(e)
message("----------")
merged$design <- NULL
},
finally="")
}
}
else if (withDesign=="drop")
merged$design <- NULL
# Quick for now
merged$callopts <- tmp[[1]]$callopts
# Try to merge actual data
newLen <- sum(vapply(tmp,function(x) return(length(x$data)),integer(1)))
merged$data <- vector("list",newLen)
theNames <- character(0)
for (i in 1:length(tmp))
theNames <- c(theNames,names(tmp[[i]]$data))
names(merged$data) <- theNames
for (m in tmp) {
for (n in names(m$data)) {
merged$data[[n]] <- m$data[[n]]
if (!is.null(merged$design)) {
if (!is.null(merged$data[[n]]$coverage))
merged$data[[n]]$coverage <-
merged$data[[n]]$coverage[rownames(merged$design)]
if (!is.null(merged$data[[n]]$profile))
merged$data[[n]]$profile <-
merged$data[[n]]$profile[rownames(merged$design),]
}
}
}
# Drop all plots for now, later recalculate
if (dropPlots)
merged$plots <- list(profile=NULL,heatmap=NULL,correlation=NULL)
else
merged$plots <- NULL
return(merged)
}
decideChanges <- function(input,currCall,prevCall) {
if (is.null(prevCall))
return(input)
# Check region and flank
if (currCall$region != prevCall$region
|| !all(currCall$flank == prevCall$flank))
input <- removeData(input,c("coverage","profile"))
# Check binParams
if (currCall$binParams$flankBinSize != prevCall$binParams$flankBinSize
|| currCall$binParams$regionBinSize != prevCall$binParams$regionBinSize
|| currCall$binParams$sumStat != prevCall$binParams$sumStat
|| currCall$binParams$interpolation != prevCall$binParams$interpolation
|| currCall$binParams$forceHeatmapBinning !=
prevCall$binParams$forceHeatmapBinning
|| currCall$binParams$forcedBinSize != prevCall$binParams$forcedBinSize
|| currCall$binParams$chunking != prevCall$binParams$chunking)
input <- removeData(input,"profile")
if (currCall$preprocessParams$normalize !=
prevCall$preprocessParams$normalize
|| currCall$preprocessParams$sampleTo !=
prevCall$preprocessParams$sampleTo
|| currCall$preprocessParams$spliceAction !=
prevCall$preprocessParams$spliceAction
|| currCall$preprocessParams$spliceRemoveQ !=
prevCall$preprocessParams$spliceRemoveQ
|| currCall$preprocessParams$spliceRemoveQ !=
prevCall$preprocessParams$spliceRemoveQ)
#|| currCall$preprocessParams$seed != prevCall$preprocessParams$seed)
input <- removeData(input,c("ranges","coverage","profile"))
return(input)
}
removeData <- function(input,type=c("ranges","coverage","profile")) {
type <- tolower(type)
checkTextArgs("type",type,c("ranges","coverage","profile"),multiarg=TRUE)
if (!is.null(input$data)) # Gave recoup output object
for (i in 1:length(input$data))
input$data[[i]][type] <- NULL
else
for (i in 1:length(input))
input[[i]][type] <- NULL
return(input)
}
calcLinearFactors <- function(input,preprocessParams) {
hasRanges <- vapply(input,function(x) is.null(x$ranges),logical(1))
if (any(hasRanges))
stop("Please provide input reads before calculation normalization ",
"factors")
libSizes <- vapply(input,function(x) return(length(x$ranges)),integer(1))
if (preprocessParams$normalize=="linear"
|| preprocessParams$normalize=="downsample")
linFac <- min(libSizes)/libSizes
else if (preprocessParams$normalize=="sampleto")
linFac <- preprocessParams$sampleTo/libSizes
names(linFac) <- names(input)
return(linFac)
}
cmclapply <- function(...,rc) {
if (suppressWarnings(!requireNamespace("parallel"))
|| .Platform$OS.type!="unix")
m <- FALSE
else {
m <- TRUE
ncores <- parallel::detectCores()
if (ncores==1)
m <- FALSE
else {
if (!missing(rc) && !is.null(rc))
ncores <- ceiling(rc*ncores)
else
m <- FALSE
}
}
if (m)
return(mclapply(...,mc.cores=ncores,mc.set.seed=FALSE))
else
return(lapply(...))
}
ssCI <- function(fit) {
res <- (fit$yin - fit$y)/(1-fit$lev)
sigma <- sqrt(var(res))
upper <- fit$y + 3.0*sigma*sqrt(fit$lev)
lower <- fit$y - 3.0*sigma*sqrt(fit$lev)
return(list(lower=lower,upper=upper))
}
getDefaultListArgs <- function(arg,design=NULL,genome=NULL) {
switch(arg,
orderBy = {
return(list(
what=c("none","suma","sumn","maxa","maxn","hc"),
order=c("descending","ascending"),
custom=NULL
))
},
binParams = {
return(list(
flankBinSize=0,
regionBinSize=0,
sumStat=c("mean","median"),
interpolation=c("auto","spline","linear","neighborhood"),
binType=c("variable","fixed"),
forceHeatmapBinning=TRUE,
forcedBinSize=c(50,200),
chunking=FALSE#,
#seed=42
))
},
preprocessParams = {
return(list(
fragLen=NA,
cleanLevel=c(0,1,2,3),
normalize=c("none","linear","downsample","sampleto"),
sampleTo=1e+6,
spliceAction=c("split","keep","remove"),
spliceRemoveQ=0.75,
#bedGenome=ifelse(!is.null(genome) && genome %in% c("hg18",
# "hg19","hg38","mm9","mm10","rn5","dm3","danrer7","pantro4",
# "susscr3"),genome,NA),
bedGenome=NA#,
#seed=42
))
},
selector = {
return(list(
id=NULL,
biotype=NULL,
exonType=NULL
))
},
strandedParams = {
return(list(
strand=NULL,
ignoreStrand=TRUE
))
},
plotParams = {
return(list(
plot=TRUE,
profile=TRUE,
heatmap=TRUE,
correlation=TRUE,
signalScale=c("natural","log2"),
heatmapScale=c("each","common"),
heatmapFactor=1,
corrScale=c("normalized","each"),
sumStat=c("mean","median"),
smooth=TRUE,
corrSmoothPar=ifelse(is.null(design),0.1,0.5),
singleFacet=c("none","wrap","grid"),
multiFacet=c("wrap","grid"),
conf=TRUE,
device=c("x11","png","jpg","tiff","bmp","pdf","ps"),
outputDir=".",
outputBase=NULL
))
},
saveParams = {
return(list(
ranges=TRUE,
coverage=TRUE,
profile=TRUE,
profilePlot=TRUE,
heatmapPlot=TRUE,
correlationPlot=TRUE
))
},
kmParams = {
return(list(
k=0,
nstart=20,
algorithm=c("Hartigan-Wong","Lloyd","Forgy","MacQueen"),
iterMax=20,
reference=NULL#,
#seed=42
))
}
)
}
#setr <- function(obj,key=c("design","profile","heatmap","correlation",
# "orderBy","kmParams","plotParams"),value) {
setr <- function(obj,key,value=NULL) {
if (is.character(key)) { # Property name, property value pairs
if (is.null(value))
stop("When the key argument is a list of property names, the ",
"value argument must not be NULL.")
if (length(key)>1) { # Value must be a list of lists
if (length(key)!=length(lengths(value)))
stop("The number values to set must be equal to the number of ",
"properties to change")
}
else
value <- list(value)
valid <- key %in% c("design","profile","heatmap","correlation",
"orderBy","kmParams","plotParams")
not.valid <- which(!valid)
if (length(not.valid)>0) {
warning("The following parameters to set are are invalid and will ",
"be ignored: ",paste(key[not.valid],collapse=", "),
immediate.=TRUE)
key[not.valid] <- NULL
value[not.valid] <- NULL
}
if (length(key)==0)
return(obj)
names(value) <- key
key <- value
}
else if (is.list(key)) { # Only a named list with property names and values
valid <- names(key) %in% c("design","profile","heatmap","correlation",
"orderBy","kmParams","plotParams")
not.valid <- which(!valid)
if (length(not.valid)>0) {
warning("The following parameters to set are are invalid and will ",
"be ignored: ",paste(names(key)[not.valid],collapse=", "),
immediate.=TRUE)
key[not.valid] <- NULL
}
if (length(key)==0)
return(obj)
}
for (n in names(key)) {
switch(n,
design = {
if (!is.null(key[[n]])) {
if (!is.data.frame(key[[n]]))
key[[n]] <- read.delim(key[[n]],row.names=1)
nfac <- ncol(key[[n]])
if (length(obj$data)>1 && nfac>2)
stop("When more than one files are provided for ",
"coverage generation, the maximum number of ",
"allowed value factors is 2")
if (length(obj$data)>1 && nfac>1
&& obj$callopts$kmParams$k>0)
stop("When more than one files are provided for ",
"coverage generation and k-means clustering is ",
"also requested, the maximum number of allowed ",
"design factors is 1")
if (length(obj$data)==1 && nfac>3)
stop("The maximum number of allowed design factors is",
" 3")
if (length(obj$data)==1 && nfac>2
&& obj$callopts$kmParams$k>0)
stop("The maximum number of allowed design factors ",
"when k-means clustering is requested is 2")
}
obj$design <- key[[n]]
},
profile = {
if (!is(key[[n]],"gg") && !is(key[[n]],"ggplot")) {
warning("The supplied profile plot is not a ggplot ",
"object! Ignoring...",immediate.=TRUE)
return(obj)
}
obj$plots$profile <- key[[n]]
},
heatmap = {
if (!is(key[[n]],"HeatmapList")) {
warning("The supplied heatmap plot is not a Heatmap ",
"object! Ignoring...",immediate.=TRUE)
return(obj)
}
obj$plots$heatmap <- key[[n]]
},
correlation = {
if (!is(key[[n]],"gg") && !is(key[[n]],"ggplot")) {
warning("The supplied correlation plot is not a ggplot ",
" object! Ignoring...",immediate.=TRUE)
return(obj)
}
obj$plots$correlation <- key[[n]]
},
orderBy = {
orderByDefault <- getDefaultListArgs("orderBy")
orderBy <- setArg(orderByDefault,key[[n]])
orderBy <- validateListArgs("orderBy",orderBy)
obj$callopts$orderBy <- orderBy
# Should change also complexHeatmapParams
if (length(grep("hc",orderBy$what))>0
&& !(obj$callopts$complexHeatmapParams$main$cluster_rows
|| obj$callopts$complexHeatmapParams$group$cluster_rows)) {
message("Changing also hierarchical clustering parameters ",
"to comply with new orderBy settings.")
obj$callopts$complexHeatmapParams$main$cluster_rows <- TRUE
obj$callopts$complexHeatmapParams$group$cluster_rows <- TRUE
}
if ((obj$callopts$complexHeatmapParams$main$cluster_rows
|| obj$callopts$complexHeatmapParams$group$cluster_rows)
&& length(grep("hc",orderBy$what))==0) {
message("Changing also hierarchical clustering parameters ",
"to comply with new orderBy settings.")
obj$callopts$complexHeatmapParams$main$cluster_rows <- FALSE
obj$callopts$complexHeatmapParams$group$cluster_rows <-
FALSE
}
},
kmParams = {
kmParamsDefault <- getDefaultListArgs("kmParams")
kmParams <- setArg(kmParamsDefault,key[[n]])
kmParams <- validateListArgs("kmParams",kmParams)
obj$callopts$kmParams <- kmParams
},
plotParams = {
plotParamsDefault <- getDefaultListArgs("plotParams")
plotParams <- setArg(plotParamsDefault,key[[n]])
plotParams <- validateListArgs("plotParams",plotParams)
obj$callopts$plotParams <- plotParams
}
)
}
return(obj)
}
getr <- function(obj,key=c("design","profile","heatmap","correlation","orderBy",
"kmParams","plotParams")) {
checkTextArgs("key",key,c("design","profile","heatmap","correlation",
"orderBy","kmParams","plotParams"))
switch(key,
design = {
return(obj$design)
},
profile = {
return(obj$plots$profile)
},
heatmap = {
return(obj$plots$heatmap)
},
correlation = {
return(obj$plots$correlation)
},
orderBy = {
return(obj$callopts$orderBy)
},
kmParams = {
return(obj$callopts$kmParams)
},
plotParams = {
return(obj$callopts$plotParams)
}
)
}
getArg <- function(arg.list,arg.name) {
return(arg.list[arg.name])
}
setArg <- function(arg.list,arg.name,arg.value=NULL) {
if (is.list(arg.name))
arg.list[names(arg.name)] <- arg.name
else if (is.character(arg.name)) {
tmp <- vector("list",length(arg.name))
names(tmp) <- arg.name
i <- 0
for (n in arg.name) {
i <- i + 1
tmp[[n]] <- arg.value[i]
}
arg.list[arg.name] <- tmp
}
return(arg.list)
}
areColors <- function(x) {
return(vapply(x,function(y) {
tryCatch(is.matrix(col2rgb(y)),
error=function(e) FALSE)
},logical(1)))
}
################################################################################
# Legacy functions
#splitVectorOld <- function(x,n,interp,stat,seed=42) {
# isRle <- ifelse(is(x,"Rle"),TRUE,FALSE)
# if (length(x)<n) {
# if (isRle)
# x <- as.numeric(x)
# switch(interp,
# auto = {
# d <- (n-length(x))/n
# if (d < 0.2) { # Then quite safe for neighborhood method
# y <- rep(NA,n)
# set.seed(seed)
# y[1:2] <- x[1:2]
# y[(n-1):n] <- x[(length(x)-1):length(x)]
# orig.pos <- sort(sample(3:(n-2),length(x)-4))
# y[orig.pos] <- x[3:(length(x)-2)]
# na <- which(is.na(y))
# avinds <- lapply(na,function(z) {
# return(c(z-2,z-1,z+1,z+2))
# })
# xx <- unlist(lapply(avinds,function(ii,yy) {
# return(mean(yy[ii],na.rm=TRUE))
# },y))
# y[na] <- xx
# x <- y
# }
# else { # Spline is the safest
# x <- spline(x,n=n)$y
# x[x<0] <- 0
# }
# },
# spline = {
# x <- spline(x,n=n)$y
# x[x<0] <- 0
# },
# linear = {
# x <- approx(x,n=n)$y
# x[x<0] <- 0
# },
# neighborhood = {
# y <- rep(NA,n)
# set.seed(seed)
# y[1:2] <- x[1:2]
# y[(n-1):n] <- x[(length(x)-1):length(x)]
# orig.pos <- sort(sample(3:(n-2),length(x)-4))
# y[orig.pos] <- x[3:(length(x)-2)]
# na <- which(is.na(y))
# avinds <- lapply(na,function(z) {
# return(c(z-2,z-1,z+1,z+2))
# })
# xx <- unlist(lapply(avinds,function(ii,yy) {
# return(mean(yy[ii],na.rm=TRUE))
# },y))
# y[na] <- xx
# x <- y
# }
# )
# if (isRle)
# x <- Rle(x)
# }
# binSize <- floor(length(x)/n)
# dif <- length(x) - binSize*n
# binFac <- rep(binSize,n)
# # Random bin increase size to avoid problems
# set.seed(seed)
# add <- sample(1:n,dif)
# binFac[add] <- binFac[add]+1
# f <- factor(rep(1:n,binFac))
# #S <- split(x,f)
# #return(llply(S,stat))
# S <- split(1:length(x),f)
# s <- sapply(S,function(x) x[1])
# return(aggregate(x,FUN=stat,start=s,width=binFac))
#}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.