Nothing
## ---- eval = FALSE------------------------------------------------------------
#
# if (!requireNamespace("BiocManager", quietly = TRUE))
# install.packages("BiocManager")
#
# BiocManager::install("pulsedSilac")
#
## ---- eval = FALSE------------------------------------------------------------
#
# BiocManager::install('marcpaga/pulsedSilac')
#
## ---- message = FALSE---------------------------------------------------------
require(pulsedSilac)
## assays
assays_protein <- list(expression = matrix(1:9, ncol = 3))
## colData
colData <- data.frame(sample = c('A1', 'A2', 'A3'),
condition = c('A', 'A', 'A'),
time = c(1, 2, 3))
## rowData
rowData_protein <- data.frame(prot_id = LETTERS[1:3])
## construct the SilacProteinExperiment
protExp <- SilacProteinExperiment(assays = assays_protein,
rowData = rowData_protein,
colData = colData,
conditionCol = 'condition',
timeCol = 'time')
protExp
## -----------------------------------------------------------------------------
## assays
assays_peptide <- list(expression = matrix(1:15, ncol = 3))
## colData
colData <- data.frame(sample = c('A1', 'A2', 'A3'),
condition = c('A', 'A', 'A'),
time = c(1, 2, 3))
## rowData
rowData_peptide <- data.frame(pept_id = letters[1:5],
prot_id = c('A', 'A', 'B', 'C', 'C'))
## construct the SilacProteinExperiment
peptExp <- SilacPeptideExperiment(assays = assays_peptide,
rowData = rowData_peptide,
colData = colData,
conditionCol = 'condition',
timeCol = 'time')
peptExp
## -----------------------------------------------------------------------------
## assays
assays(protExp)
assays(peptExp)
## -----------------------------------------------------------------------------
## rowData
rowData(protExp)
rowData(peptExp)
## -----------------------------------------------------------------------------
## colData
colData(protExp)
colData(peptExp)
## -----------------------------------------------------------------------------
## metaoptions
metaoptions(protExp)
metaoptions(peptExp)[['proteinCol']] <- 'prot_id'
metaoptions(peptExp)
## -----------------------------------------------------------------------------
## subsetting by rows and columns
protExp[1, 1:2]
peptExp[1, 1:2]
## subsetting by rows based on rowData
subset(protExp, prot_id == 'A')
subset(peptExp, pept_id %in% c('a', 'b'))
## quick acces to colData
protExp$sample
peptExp$condition
## -----------------------------------------------------------------------------
## combining by columns
cbind(protExp[, 1], protExp[, 2:3])
## combining by rows
rbind(peptExp[1:3,], peptExp[4:5, ])
## combine rows and columns
merge(peptExp[1:3, 1], peptExp[3:5, 2:3])
## -----------------------------------------------------------------------------
ProteomicsExp <- SilacProteomicsExperiment(SilacProteinExperiment = protExp,
SilacPeptideExperiment = peptExp)
ProteomicsExp
## -----------------------------------------------------------------------------
## list with the relationships
protein_to_peptide <- list(A = c('a', 'b'), B = c('c'), C = c('d', 'e'))
## function to build the data.frame
linkerDf <- buildLinkerDf(protIDs = LETTERS[1:3],
pepIDs = letters[1:5],
protToPep = protein_to_peptide)
linkerDf
ProteomicsExp <- SilacProteomicsExperiment(SilacProteinExperiment = protExp,
SilacPeptideExperiment = peptExp,
linkerDf = linkerDf)
## -----------------------------------------------------------------------------
## colData
colData(ProteomicsExp)
## -----------------------------------------------------------------------------
## linkerDf
linkerDf(ProteomicsExp)
## -----------------------------------------------------------------------------
## metaoptions
metaoptions(ProteomicsExp)
## -----------------------------------------------------------------------------
## assays
assays(ProteomicsExp)
## -----------------------------------------------------------------------------
## rowData
rowData(ProteomicsExp)
## -----------------------------------------------------------------------------
## assays of protein level
assaysProt(ProteomicsExp)
## assays of peptide level
assaysPept(ProteomicsExp)
## -----------------------------------------------------------------------------
## rowData of protein level
rowDataProt(ProteomicsExp)
## rowData of peptide level
rowDataPept(ProteomicsExp)
## -----------------------------------------------------------------------------
ProtExp(ProteomicsExp)
PeptExp(ProteomicsExp)
## -----------------------------------------------------------------------------
## indicate which rowDat columns have unique ids for proteins and peptides
metaoptions(ProteomicsExp)[['idColProt']] <- 'prot_id'
metaoptions(ProteomicsExp)[['idColPept']] <- 'pept_id'
## indicate that we want to apply the subset at protein level
metaoptions(ProteomicsExp)[['subsetMode']] <- 'protein'
## and not extend it to the peptide level
metaoptions(ProteomicsExp)[['linkedSubset']] <- FALSE
ProteomicsExp[1:2,]
## -----------------------------------------------------------------------------
## to extend we set the metaoption to TRUE
metaoptions(ProteomicsExp)[['linkedSubset']] <- TRUE
ProteomicsExp[1:2,]
## -----------------------------------------------------------------------------
## indicate that we want to apply the subset at protein level
metaoptions(ProteomicsExp)[['subsetMode']] <- 'peptide'
## to extend we set the metaoption to TRUE
metaoptions(ProteomicsExp)[['linkedSubset']] <- TRUE
ProteomicsExp[1:2,]
## -----------------------------------------------------------------------------
## without linked Subset
metaoptions(ProteomicsExp)[['linkedSubset']] <- FALSE
subsetProt(ProteomicsExp, prot_id == 'B')
## -----------------------------------------------------------------------------
## with linked Subset
metaoptions(ProteomicsExp)[['linkedSubset']] <- TRUE
subsetProt(ProteomicsExp, prot_id == 'B')
## -----------------------------------------------------------------------------
## cbind
cbind(ProteomicsExp[, 1], ProteomicsExp[, 2])
## -----------------------------------------------------------------------------
## rbind
rbind(ProteomicsExp[1:2,], ProteomicsExp[3,])
## -----------------------------------------------------------------------------
## merge
merge(ProteomicsExp[1:3, 1], ProteomicsExp[3:4, 2:3])
## ---- echo = FALSE------------------------------------------------------------
## load objects required for the vignette
data('wormsPE')
data('mefPE')
data('recycleLightLysine')
## -----------------------------------------------------------------------------
wormsPE
## -----------------------------------------------------------------------------
barplotCounts(wormsPE, assayName = 'ratio')
## -----------------------------------------------------------------------------
barplotTimeCoverage(wormsPE, assayName = 'ratio')
## -----------------------------------------------------------------------------
wormsPE2 <- filterByMissingTimepoints(wormsPE,
assayName = 'ratio',
maxMissing = 2,
strict = FALSE)
barplotTimeCoverage(wormsPE2, assayName = 'ratio')
## -----------------------------------------------------------------------------
upsetTimeCoverage(ProtExp(wormsPE2),
assayName = 'ratio',
maxMissing = 2)
## ---- eval = FALSE------------------------------------------------------------
#
# subsetProt(wormsPE, Unique.peptides > 2)
#
## ---- eval = FALSE------------------------------------------------------------
#
# subsetProt(wormsPE, Potential.contaminant != '+')
# subsetProt(wormsPE, Reverse != '+')
#
#
## ---- eval = FALSE------------------------------------------------------------
#
# ## calculate the ratio of new istope over old isotope
# wormsPE <- calculateIsotopeRatio(x = wormsPE,
# newIsotopeAssay = 'int_heavy',
# oldIsotopeAssay = 'int_light')
#
## ---- eval = TRUE-------------------------------------------------------------
wormsPE <- calculateIsotopeFraction(wormsPE, ratioAssay = 'ratio')
assaysProt(wormsPE)
assaysPept(wormsPE)
## ---- eval = FALSE------------------------------------------------------------
#
# wormsPE <- calculateIsotopeFraction(wormsPE,
# newIsoAssay = 'int_heavy',
# oldIsoAssay = 'int_light',
# earlyTimepoints = 1,
# lateTimepoints = 7)
#
## ---- warning = FALSE---------------------------------------------------------
plotDistributionAssay(wormsPE, assayName = 'fraction')
## -----------------------------------------------------------------------------
protPE <- ProtExp(wormsPE)
scatterCompareAssays(x = protPE,
conditions = c('OW40', 'OW450'),
assayName = 'ratio')
## -----------------------------------------------------------------------------
scatterCompareAssays(x = protPE,
conditions = c('OW40', 'OW450'),
assayName = 'int_total')
## ---- warning = FALSE---------------------------------------------------------
modelList <- modelTurnover(x = wormsPE,
assayName = 'fraction',
formula = 'fraction ~ 1 - exp(-k*t)',
start = list(k = 0.02),
mode = 'protein',
returnModel = TRUE)
## -----------------------------------------------------------------------------
modelList[['half_life']] <- log(0.5)/(-modelList$param_values$k)
## ---- warning = FALSE---------------------------------------------------------
modelList <- modelTurnover(x = wormsPE,
assayName = 'fraction',
formula = 'fraction ~ 1 - exp(-k*t)',
start = list(k = 0.02),
mode = 'protein',
returnModel = TRUE)
plotIndividualModel(x = wormsPE,
modelList = modelList,
num = 2)
## ---- warning = FALSE---------------------------------------------------------
## to indicate which column of rowDataPept indicates the assigned protein
metaoptions(wormsPE)[['proteinCol']] <- 'Protein.group.IDs'
modelList <- modelTurnover(x = wormsPE,
assayName = 'fraction',
formula = 'fraction ~ 1 - exp(-k*t)',
start = list(k = 0.02),
mode = 'grouped',
returnModel = TRUE)
plotIndividualModel(x = wormsPE,
modelList = modelList,
num = 2)
## ---- eval = TRUE, include = TRUE, warning = FALSE----------------------------
modelList <- modelTurnover(x = wormsPE,
assayName = 'fraction',
formula = 'fraction ~ 1 - exp(-k*t)',
start = list(k = 0.02),
mode = 'protein',
robust = TRUE,
returnModel = TRUE)
## ---- warning = FALSE, message = FALSE----------------------------------------
plotDistributionModel(modelList = modelList,
value = 'stderror',
plotType = 'density')
## ---- warning = FALSE, message = FALSE----------------------------------------
plotDistributionModel(modelList = modelList,
value = 'param_values',
plotType = 'density')
## ---- warning = FALSE, message = FALSE----------------------------------------
plotDistributionModel(modelList = modelList,
value = 'residuals',
plotType = 'density')
## ---- warning = FALSE, message = FALSE----------------------------------------
plotDistributionModel(modelList = modelList,
value = 'weights',
plotType = 'density')
## ----echo=FALSE---------------------------------------------------------------
modelList[['half_life']] <- log(0.5)/(-modelList$param_values$k)
## ---- warning = FALSE, message = FALSE----------------------------------------
plotDistributionModel(modelList = modelList,
value = 'half_life',
plotType = 'density')
## -----------------------------------------------------------------------------
scatterCompareModels(modelList = modelList,
conditions = c('OW40', 'OW450'),
value = 'param_values')
scatterCompareModels(modelList = modelList,
conditions = c('OW40', 'OW450'),
value = 'stderror')
## ---- warning = FALSE, message = FALSE----------------------------------------
modelList <- calculateAIC(modelList, smallSampleSize = TRUE)
## -----------------------------------------------------------------------------
names(modelList)
## ---- warning = FALSE, message = FALSE----------------------------------------
plotDistributionModel(modelList = modelList, value = 'AIC')
## ---- warning = FALSE, include=TRUE-------------------------------------------
modelList1 <- modelTurnover(x = wormsPE,
assayName = 'fraction',
formula = 'fraction ~ 1 - exp(-k*t)',
start = list(k = 0.02),
mode = 'protein',
robust = FALSE,
returnModel = TRUE)
modelList1 <- calculateAIC(modelList = modelList1,
smallSampleSize = TRUE)
modelList2 <- modelTurnover(x = wormsPE,
assayName = 'fraction',
formula = 'fraction ~ 1 - exp(-k*t) + b',
start = list(k = 0.02, b = 0),
mode = 'protein',
robust = FALSE,
returnModel = TRUE)
modelList2 <- calculateAIC(modelList = modelList2,
smallSampleSize = TRUE)
## ---- warning = FALSE, message = FALSE----------------------------------------
modelProbabilities <- compareAIC(modelList1, modelList2)
plotDistributionModel(modelList = modelProbabilities,
value = 'aicprobabilities',
returnDataFrame = FALSE)
## ---- warning = FALSE---------------------------------------------------------
mefPE
## ---- warning = FALSE---------------------------------------------------------
plotDistributionAssay(mefPE, assayName = 'fraction')
## ---- warning = FALSE---------------------------------------------------------
stablePE <- mostStable(mefPE, assayName = 'fraction', n = 50)
stablePE
## ---- warning = FALSE---------------------------------------------------------
stableModels <- modelTurnover(x = stablePE,
assayName = 'fraction',
formula = 'fraction ~ 1 - exp(-(log(2)/tc)*t)',
start = list(tc = 20),
mode = 'protein',
robust = FALSE,
returnModel = FALSE)
plotDistributionModel(stableModels, value = 'param_values', plotType = 'boxplot')
## ---- warning = FALSE---------------------------------------------------------
apply(stableModels$param_values$tc, 2, mean)
## ---- warning = FALSE---------------------------------------------------------
modelsNoSerum <- modelTurnover(x = mefPE[, 1:5],
assayName = 'fraction',
formula = 'fraction ~ 1 - exp(-(0.0074 + k)*t)',
start = list(k = 0.02),
mode = 'protein',
robust = FALSE,
returnModel = TRUE)
modelsSerum <- modelTurnover(x = mefPE[, 6:10],
assayName = 'fraction',
formula = 'fraction ~ 1 - exp(-(0.0276 + k)*t)',
start = list(k = 0.02),
mode = 'protein',
robust = FALSE,
returnModel = TRUE)
modelsMef <- mergeModelsLists(modelsNoSerum, modelsSerum)
## ---- warning = FALSE---------------------------------------------------------
modelsNoCorrect <- modelTurnover(x = mefPE,
assayName = 'fraction',
formula = 'fraction ~ 1 - exp(-(k)*t)',
start = list(k = 0.02),
mode = 'protein',
robust = FALSE,
returnModel = TRUE)
## ---- warning = FALSE---------------------------------------------------------
plotDistributionModel(modelList = modelsMef,
value = 'param_values',
plotType = 'density')
## ---- warning = FALSE---------------------------------------------------------
plotDistributionModel(modelList = modelsNoCorrect,
value = 'param_values',
plotType = 'density')
## -----------------------------------------------------------------------------
protPE <- ProtExp(wormsPE)
missPE <- addMisscleavedPeptides(x = protPE,
newdata = recycleLightLysine,
idColPept = 'Sequence',
modCol = 'Modifications',
dataCols = c(18:31))
assays(missPE)
## -----------------------------------------------------------------------------
names(assays(missPE))[1:2] <- c('int_lys8lys8', 'int_lys8lys0')
missPE <- calculateOldIsotopePool(x = missPE, 'int_lys8lys8', 'int_lys8lys0')
## -----------------------------------------------------------------------------
plotDistributionAssay(missPE, assayName = 'oldIsotopePool')
## -----------------------------------------------------------------------------
protExp <- ProtExp(wormsPE)
as(protExp, 'SummarizedExperiment')
## -----------------------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.