Nothing
#' Reduce dimensionality after processing missing values from data frame
#'
#' @param data Data frame: data
#' @param type Character: dimensionality reduction technique (\code{pca} or
#' \code{ica})
#' @param naTolerance Integer: percentage of tolerated missing values per column
#' (deprecated)
#' @param missingValues Integer: number of tolerated missing values per column
#' to be replaced with the mean of the values of that same column
#' @param scale. Boolean: scale variables?
#' @param ... Extra parameters passed to FUN
#' @inheritParams base::scale
#'
#' @importFrom stats prcomp
#' @importFrom fastICA fastICA
#'
#' @return PCA result in a \code{prcomp} object or ICA result
#' object
#' @keywords internal
reduceDimensionality <- function(data, type=c("pca", "ica"), center=TRUE,
scale.=FALSE, naTolerance=NULL,
missingValues=round(0.05 * ncol(data)), ...) {
# # Get individuals (rows) with less than a given percentage of NAs
# nas <- rowSums(is.na(data))
# # hist(nas/ncol(data)*100)
# data <- data[nas/ncol(data)*100 <= naTolerance, , drop=FALSE]
# if (nrow(data) == 0) return(NULL)
# # Replace NAs with the medians for each individual (row)
# medians <- customRowMedians(data, na.rm=TRUE, fast=TRUE)
# data[is.na(data)] <- rep(medians, sum(is.na(data)))
# Get loadings (columns) with less than a given percentage of NAs
nas <- colSums(is.na(data))
if (!is.null(naTolerance)) {
warning("The argument 'naTolerance' is deprecated:",
"use 'missingValues' instead.")
data <- data[ , nas/nrow(data) * 100 <= naTolerance, drop=FALSE]
} else {
data <- data[ , nas <= missingValues, drop=FALSE]
}
if (ncol(data) == 0) {
warning("Empty data input. ",
"Try increasing the tolerance for missing values.")
return(NULL)
}
# Replace NAs with the medians for each loading (column)
medians <- customColMedians(data, na.rm=TRUE, fast=TRUE)
nas <- colSums(is.na(data))
data[is.na(data)] <- rep(medians, nas)
eventData <- attr(data, "colData")
if (!is(eventData, "eventData")) eventData <- NULL
if (type == "pca") {
# Perform principal component analysis
res <- prcomp(data, center=center, scale.=scale., ...)
} else if (type == "ica") {
# Perform independent component analysis
data <- scale(data, scale=scale., center=center)
res <- fastICA(data, ...)
# Rename colnames
if (!is(res, "error") && !is.null(res$S)) {
colnames(res$S) <- paste0("IC", seq(ncol(res$S)))
}
# # Fix rownames for C implementation of fastICA
# res <- tryCatch(fastICA(data, method="C", ...), error=return)
# if (!is(res, "error")) {
# if (!is.null(res$X)) rownames(res$X) <- rownames(data)
# if (!is.null(res$S)) rownames(res$S) <- rownames(data)
# }
}
# Result is useless if it only has one point
if ("x" %in% names(res) && nrow(res$x) == 1) res <- NULL
attr(res, "eventData") <- eventData
return(res)
}
#' Add clusters to \code{highchart} object
#'
#' Clusters are added as coloured polygons.
#'
#' @param hc \code{highchart} object
#' @param data Data frame
#' @param clustering Character: group of each sample
#'
#' @importFrom grDevices chull
#'
#' @return \code{highcharter} object
#' @keywords internal
plotClusters <- function(hc, data, clustering) {
for ( each in sort(unique(clustering)) ) {
df <- data[clustering == each, , drop=FALSE]
df <- df[chull(df), , drop=FALSE] # cluster points' convex hull
colour <- JS(paste0(
"Highcharts.Color(Highcharts.getOptions().",
"colors[", each, "]).setOpacity(0.3).get()"))
if (nrow(df) <= 2) {
hc <- hc %>% hc_add_series(
df, zIndex=-1, color=colour,
name=paste("Cluster", each), lineWidth=8,
marker=list(radius=8, symbol="circle"))
} else {
hc <- hc %>% hc_add_series(
df, type="polygon", zIndex=-1, color=colour,
name=paste("Cluster", each))
}
}
return(hc)
}
#' @rdname appUI
#' @importFrom shiny NS
dimReductionUI <- function(id, tab) {
ns <- NS(id)
uiList <- getUiFunctions(ns, "dimReduction",
priority=c("pcaUI", "icaUI"))
return(uiList)
}
#' @rdname appServer
#'
#' @importFrom shiny observe observeEvent renderPlot
#' @importFrom shinyjs hide show
dimReductionServer <- function(input, output, session) {
# Run server logic from the scripts
server <- getServerFunctions("dimReduction",
priority=c("pcaServer", "icaServer"))
}
attr(dimReductionUI, "loader") <- "analysis"
attr(dimReductionUI, "name") <- "Dimensionality reduction"
attr(dimReductionServer, "loader") <- "analysis"
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.