Nothing
## ----global_options, include=FALSE--------------------------------------------
knitr::opts_chunk$set(fig.width=6, fig.height=6, fig.path='figures/')
## ----loading, echo=TRUE, warning=FALSE, message=FALSE-------------------------
# loading the packages
library(proFIA)
library(plasFIA)
## ----paths--------------------------------------------------------------------
# finding the directory of the raw files
path <- system.file(package="plasFIA", "mzML")
list.files(path)
## ----profiaset,fig.show="hide",message=FALSE----------------------------------
# defining the ppm parameter adapted to the Orbitrap Fusion
ppm <- 2
# performing the first step of the workflow
plasSet <- proFIAset(path, ppm=ppm, parallel=FALSE)
## ----raw_plot-----------------------------------------------------------------
# loading the spiked molecules data frame
data("plasMols")
# plotting the raw region aroung the Diphenhydramine mass signal
plasMols[7,]
mzrange <- c(plasMols[7,"mass_M+H"]-0.1,plasMols[7,"mass_M+H"]+0.1)
plotRaw(plasSet, type="r", sample=3, ylim=mzrange, size=0.6)
## ----peaks_plot---------------------------------------------------------------
# plotting the filter Dipehnhydramine region.
plotRaw(plasSet, type="p", sample=3, ylim=mzrange, size=0.6)
## ----plot_injection-----------------------------------------------------------
# plotting the injection peak
plotSamplePeaks(plasSet)
## ----group,message=FALSE------------------------------------------------------
# selecting the parameters
ppmgroup <- 1
# due to the experimental design, sample fraction was set to 0.2
fracGroup <- 0.2
# grouping
plasSet <- group.FIA(plasSet, ppmGroup=ppmgroup, fracGroup=fracGroup)
## ----plotEICs-----------------------------------------------------------------
#plotting the EICs of the parameters.
plotFlowgrams(plasSet,mz=plasMols[4,"mass_M+H"])
## ----find_group---------------------------------------------------------------
# Searching for match group with 2 ppm tolerance
lMatch <- findMzGroup(plasSet,plasMols[,"mass_M+H"],tol=3)
# index of the 40 molecules which may be used with plotEICs
molFound <- data.frame(names=plasMols[,"names"],found=lMatch)
head(molFound)
#Getting the molecules which are not detected
plasMols[which(is.na(lMatch)),]
## ----datamatrix---------------------------------------------------------------
# building the data matrix
plasSet <- makeDataMatrix(plasSet, maxo=FALSE)
## ----impute_fia, warning=FALSE, eval=FALSE------------------------------------
# # k is supposed to be 3 at minimum, however here we have only 2 sample by class, the results of the imputation are therefore irrelevant.
# k <- 3
#
# #Missing values imputation using kNN for truncated distribution by default.
# plasSet <- impute.FIA(plasSet,k=k)
#
# #Reinitializing the data matrix.
# plasSet <- makeDataMatrix(plasSet)
#
# #Imputation using random forest.
# plasSet <- impute.FIA(plasSet,method="randomForest")
#
# #As the dataset is ill-suited for missing value imputation we rebuild the data matrix.
# plasSet <- makeDataMatrix(plasSet)
## ----plot,message=FALSE-------------------------------------------------------
plot(plasSet)
## ----analyzeAcquisitionFIA, eval=FALSE----------------------------------------
# #selecting the parameters
# ppm <- 2
# ppmgroup <- 1
# fracGroup <- 0.2
# k <- 3
#
# # running the whole workflow in a single step
# plasSet <- analyzeAcquisitionFIA(path, ppm=ppm, ppmGroup=ppmgroup, k=k,fracGroup = fracGroup,parallel=FALSE)
#
# # Running the wholoe workflow in a single step, using parallelism
# # with the BiocParallel package
# plasSet <- analyzeAcquisitionFIA(path, ppm=ppm, ppmGroup=ppmgroup, k=k,fracGroup = fracGroup,parallel=TRUE)
#
## ----export-------------------------------------------------------------------
#Expression Set.
eset <- exportExpressionSet(plasSet)
eset
#Peak Table.
pt <- exportPeakTable(plasSet)
#3 Tables:
dm <- exportDataMatrix(plasSet)
vm <- exportVariableMetadata(plasSet)
## ----multivariate-------------------------------------------------------------
library(ropls)
data("plasSamples")
vconcentration <- plasSamples[,"concentration_ng_ml"]
#vconcentration=(c(100,100,1000,1000,10000,10000)*10^-10)
peakTable <- exportPeakTable(plasSet,mval="zero")
###Cutting the useless column
dataMatrix <- peakTable[,1:nrow(phenoClasses(plasSet))]
## ----plot_summary_opls, echo=FALSE--------------------------------------------
plasSet.opls <- opls(t(dataMatrix),log10(vconcentration),predI = 1,log10L = TRUE, orthoI = NA, devNewL = FALSE,crossvalI=5)
## ----plot_summary_opls_h, eval=FALSE------------------------------------------
# plasSet.opls <- opls(t(peakTable),scale(log10(vconcentration)),predI = 1,log10L = TRUE, orthoI = NA)
## ----matrix_effect_plot-------------------------------------------------------
matEfInd <- peakTable$corSampPeakMean
nnaVl <- !is.na(matEfInd)
matEfInd <- matEfInd[nnaVl]
ordVi <- order(matEfInd)
matEfInd <- matEfInd[ordVi]
vipVn <- getVipVn(plasSet.opls)[nnaVl]
orthoVipVn <- getVipVn(plasSet.opls, orthoL = TRUE)[nnaVl]
colVc <- rev(rainbow(sum(nnaVl), end = 4/6))
plot(vipVn[ordVi], orthoVipVn[ordVi], pch = 16, col = colVc,
xlab = "VIP", ylab = "VIP_ortho", main = "VIP_ortho vs VIP.",lwd=3)
##Adding the point corresponding to samples.
points(getVipVn(plasSet.opls)[lMatch],getVipVn(plasSet.opls, orthoL = TRUE)[lMatch], cex=1.2,pch=1,col="black",lwd=2)
legend("topright", legend = c(round(rev(range(matEfInd)), 2),"Spiked molecules."), pch=c(16,16,1),col = c(rev(colVc[c(1, length(colVc))]),1))
## ----plotRaw_exemple_1, message = FALSE,warning=FALSE, results='hide'---------
##Loading the plasFIA dataset
library(plasFIA)
library(proFIA)
data(plasSet)
###Selection of the first sample file
filepath <- phenoClasses(plasSet)[1,1]
filepath
###Loading the raw data
xraw <- xcmsRaw(filepath)
#proFIAset relies on the internal findBandsFIA function to detect m/z bands. The influence of ppm and dmz values can be visualized as follows:
band_list <- findBandsFIA(xraw, ppm = 15, dmz = 0.001)
mzlim <- c(233.067,233.082)
plotRaw(plasSet,sample=2,ylim=mzlim,type="r",legend=FALSE)
abline(h=band_list[,c("mzmin","mzmax")],lwd=0.5,lty=2,col="purple")
## ----plotRaw_exemple_2, message = FALSE,warning=FALSE, results='hide'---------
band_list <- findBandsFIA(xraw, ppm = 2, dmz = 0.0005)
plotRaw(plasSet,sample=2,ylim=mzlim,type="r",legend=FALSE)
abline(h=band_list[,c("mzmin","mzmax")],lwd=0.5,lty=2,col="purple")
## ----group_good_value, message=FALSE, results="hide", eval=FALSE--------------
# plasSet <- group.FIA(plasSet,ppmGroup=5,dmzGroup=0.001,fracGroup=3/18,sleep=0.001)
## ----group_wrong_value, message=FALSE, results="hide",eval=FALSE--------------
# plasSet <- group.FIA(plasSet,ppmGroup=1,dmz=0.001,fracGroup=3/18,sleep=0.001)
## ----missing_values_1---------------------------------------------------------
data(plasSet)
###You can reset the data matrix this way
plasSet <- makeDataMatrix(plasSet)
###Before imputation.
plot(plasSet)
## ----missing_values_2---------------------------------------------------------
plasSet <- impute.randomForest(plasSet)
###After imputation.
plot(plasSet)
## ----cheat_sheet--------------------------------------------------------------
system.file(package="proFIA")
## ----sessionInfo, echo=FALSE--------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.