Nothing
#' Row-wise tests of difference using the probabilistic dropout model
#'
#' This is a helper function that combines the call of \code{proDA()}
#' and \code{test_diff()}. If you need more flexibility use those
#' functions.
#'
#' The \code{pd_row_t_test} is not actually doing a t-test, but rather
#' a Wald test. But, as the two are closely related and term t-test is
#' more widely understood, we choose to use that name.
#'
#' @param X,Y,... the matrices for condition 1, 2 and so on. They must
#' have the same number of rows.
#' @param groups a factor or character vector with that assignes the
#' columns of \code{X} to different conditions. This parameter is
#' only applicable for the F-test and must be specified if only a
#' single matrix is provided.
#' @param return_fit boolean that signals that in addition to the
#' data.frame with the hypothesis test results, the fit from
#' \code{proDA()} is returned. Default: \code{FALSE}
#' @inheritParams proDA
#' @inheritParams test_diff
#'
#' @return
#' If \code{return_fit == FALSE} a data.frame is returned with the content
#' that is described in \code{\link{test_diff}}.
#'
#' If \code{return_fit == TRUE} a list is returned with two elements:
#' \code{fit} with a reference to the object returned from \code{proDA()}
#' and a \code{test_result()} with the data.frame returned from
#' \code{test_diff()}.
#'
#'
#'
#' @seealso \code{\link{proDA}} and \code{\link{test_diff}} for more
#' flexible versions. The function was inspired
#' by the \code{\link[genefilter]{rowFtests}} function in the genefilter
#' package.
#'
#'
#' @examples
#' data1 <- matrix(rnorm(10 * 3), nrow=10)
#' data2 <- matrix(rnorm(10 * 4), nrow=10)
#' data3 <- matrix(rnorm(10 * 2), nrow=10)
#'
#' # Comparing two datasets
#' pd_row_t_test(data1, data2)
#'
#' # Comparing multiple datasets
#' pd_row_f_test(data1, data2, data3)
#'
#' # Alternative
#' data_comb <- cbind(data1, data2, data3)
#' pd_row_f_test(data_comb,
#' groups = c(rep("A",3), rep("B", 4), rep("C", 2)))
#'
#' # t.test, lm, pd_row_t_test, and pd_row_f_test are
#' # approximately equivalent on fully observed data
#' set.seed(1)
#' x <- rnorm(5)
#' y <- rnorm(5, mean=0.3)
#'
#' t.test(x, y)
#' summary(lm(c(x, y) ~ cond,
#' data = data.frame(cond = c(rep("x", 5),
#' rep("y", 5)))))$coefficients[2,]
#' pd_row_t_test(matrix(x, nrow=1), matrix(y, nrow=1),
#' moderate_location = FALSE,
#' moderate_variance = FALSE)
#' pd_row_f_test(matrix(x, nrow=1), matrix(y, nrow=1),
#' moderate_location = FALSE,
#' moderate_variance = FALSE)
#'
#'
#' @export
pd_row_t_test <- function(X, Y,
moderate_location = TRUE,
moderate_variance = TRUE,
alternative = c("two.sided", "greater", "less"),
pval_adjust_method = "BH",
location_prior_df = 3,
max_iter = 20,
epsilon = 1e-3,
return_fit = FALSE,
verbose=FALSE){
design <- c(rep("Condition1", ncol(X)), rep("Condition2", ncol(Y)))
data <- cbind(X, Y)
fit <- proDA(data, design, moderate_location = moderate_location,
moderate_variance = moderate_variance, max_iter = max_iter,
epsilon = epsilon, verbose=verbose)
test_res <- test_diff(fit, Condition1 - Condition2,
alternative = alternative,
pval_adjust_method = pval_adjust_method,
verbose = verbose)
if(return_fit){
list(fit = fit, test_results = test_res)
}else{
test_res
}
}
#' @rdname pd_row_t_test
#' @export
pd_row_f_test <- function(X, ..., groups = NULL,
moderate_location = TRUE,
moderate_variance = TRUE,
pval_adjust_method = "BH",
location_prior_df = 3,
max_iter = 20,
epsilon = 1e-3,
return_fit = FALSE,
verbose=FALSE){
additional_matrices <- list(...)
if(length(additional_matrices) == 0 && (is.null(groups) ||
length(levels(as.factor(groups))) == 1) ){
stop("Data for only one condition was specified. Please provide either a multiple ",
"data matrices (pd_row_f_test(X, Y, Z, ...)) or provide the groups parameter",
"(pd_row_f_test(X, groups=c('a', 'a', 'b', 'b', ...)).")
}
if(length(additional_matrices) > 0 && ! is.null(groups)){
stop("Please specify ... or annotate the samples in X using groups, but not both")
}
if(length(additional_matrices) > 0){
groups <- c(rep(paste0("condition_", 1), ncol(X)),
unlist(lapply(seq_along(additional_matrices), function(idx){
rep(paste0("condition_", idx+1), ncol(additional_matrices[[idx]]))
})))
X <- cbind(X, do.call(cbind, additional_matrices))
}
if(length(groups) != ncol(X)){
stop("Length of groups must match the number of columns in X")
}
fit <- proDA(X, design = groups, moderate_location = moderate_location,
moderate_variance = moderate_variance, max_iter = max_iter,
epsilon = epsilon,verbose = verbose)
test_res <- test_diff(fit, reduced_model = ~ 1, pval_adjust_method = pval_adjust_method,
verbose = verbose)
if(return_fit){
list(fit = fit, test_results = test_res)
}else{
test_res
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.