Nothing
### function ranking the genes based on mrmr+prior+causality for each gene as a target
## data: Matrix of continuous or categorical values (gene expressions for example); observations in rows, features in columns.
## perturbations: matrix of {0, 1} specifying whether a gene has been pertubed in some experiments. Dimensions should be the same than data
## priors: matrix of prior information avalable for gene-gene interaction (parents in columns, children in rows). Values may be probabilities or any other weights (citations count for instance)
## predn: indices of genes to fit during network inference. If missing, all the genes will be used for network inference
## priors.weight: real value in [0, 1] specifying the weight to put on the priors (0=only the data are used, 1=only the priors are used to infer the topology of the network). If 'priors.weight' is missing it will be optimized gene by hene in an automatic way.
## maxparents: maximum number of parents allowed for each gene
### returns matrix: each row corresponds to a target gene, columns contain the ranked genes (non NA values; gene names)
`.rank.genes.causal.perturbations` <-
function(priors, data, perturbations, predn, priors.weight, maxparents, causal=TRUE) {
########################
### initialize variables
########################
if(missing(perturbations) || is.null(perturbations)) {
perturbations <- matrix(FALSE, nrow=nrow(data), ncol=ncol(data), dimnames=dimnames(data))
}
res <- matrix(NA, nrow=length(predn), ncol=ncol(data) - 1, dimnames=list(dimnames(data)[[2]][predn], seq(1, ncol(data) - 1)))
res.netw <- matrix(-1, nrow=ncol(data), ncol=length(predn), dimnames=list(dimnames(data)[[2]], dimnames(data)[[2]][predn]))
data.original <- data.matrix(data)
score.causal <- matrix(Inf, nrow=ncol(data), ncol=ncol(data), dimnames=list(colnames(data), colnames(data)))
if(priors.weight != 1) {
## data will be used to rank the potential parent genes
mrmr.global <- NULL
## no perturbations
## compute mrmr score for the target genes
# if(causal){
# local.maxparents<-floor(min(max(3*maxparents,0.05*ncol(data)),0.5*(ncol(data))))
# }else{
# local.maxparents<-maxparents
# }
mrmr.global <- .Call("mrnet_adapted", data.original,as.integer(is.na(data.original)), maxparents, ncol(data.original), nrow(data.original), predn, length(predn), -1000)
mrmr.global <- matrix(mrmr.global, nrow=ncol(data.original), ncol=ncol(data.original), byrow=FALSE)
dimnames(mrmr.global) <- list(colnames(data.original), colnames(data.original))
mrmr.global[mrmr.global == -1000] <- NA
for(i in 1:length(predn)) {
data <- data.original
## remove observation where the target variable was perturbed (no link between observation and target variable)
ind <- which(is.na(perturbations[, predn[i]]) | perturbations[, predn[i]] == 1)
if(length(ind)>0) {
data <- data[-ind,]
## since the target gene has been perturbed in some of the experiments we should recompute the mim and mrmr matrices
## compute mrmr score for the target genes
## mrmr_adapted(SEXP data, SEXP maxparents, SEXP nvar, SEXP nsample, SEXP predn, SEXP npredn, SEXP threshold);
mrmr <- .Call("mrnet_adapted", data,as.integer(is.na(data)), maxparents, ncol(data), nrow(data), predn, length(predn), -1000)
mrmr <- matrix(mrmr, nrow=ncol(data), ncol=ncol(data), byrow=FALSE)
dimnames(mrmr) <- list(colnames(data),colnames(data))
mrmr[mrmr == -1000] <- NA
} else { mrmr <- mrmr.global}
## mrmr scores on the diagonal should be NA
diag(mrmr) <- NA
## select only the variables specified by the user (predn)
mrmr <- mrmr[ , predn, drop=FALSE]
########################
### compute mrmr score matrix
########################
## normalization of mrmr scores
mrmr <- mrmr/max(abs(mrmr), na.rm=TRUE)
## avoid mrmr score of exactly 0
mrmr[!is.na(mrmr) & mrmr == 0] <- 1e-16
score <- matrix(0, nrow=ncol(data), ncol=ncol(data), dimnames=list(colnames(data), colnames(data)))
score[ , predn][!is.na(mrmr)] <- mrmr[!is.na(mrmr)]
if(causal) {
########################
## find all adjacencies of node to predict in score
########################
tmp.adj <- matrix(0,ncol=ncol(data),nrow=ncol(data), dimnames=list(colnames(data), colnames(data)))
tmp.adj[predn[i],] <- tmp.adj[ ,predn[i]] <- score[ ,predn[i]]
########################
## determine all triplets X.k-X.j-X.l from these adjecencies
########################
trip <- (.network2triplets(tmp.adj,predn[i]))
parents <- NULL
score.parents <- NULL
if(length(trip)>0){
if(length(trip)==3){
trip <- (t(as.matrix(trip)))
}
########################
## compute I(X.k,X.l)-I(X.k,X.l|X.j)
########################
trip <- as.data.frame(cbind(trip,(.get.ii4triplets.gaussian(data,trip))))
########################
## remove those triplets for which the outer nodes are connected
########################
ind.rm <- NULL
for(j in 1:nrow(trip)){
if(score[trip[j,1],trip[j,3]] !=0 || score[trip[j,3],trip[j,1]] !=0) {
ind.rm <- c(ind.rm,j)
}
}
if(!is.null(ind.rm)) { trip <- (trip[-ind.rm, , drop=FALSE]) }
########################
## if there are triplets for which I(X,Z)-I(X,Z|Y)<0, add these to the list of parents
########################
if(nrow(trip)>0){
for(j in 1:nrow(trip)){
if(!is.na(trip[j,4]) && !is.nan(trip[j,4]) && trip[j,4] < score.causal[trip[j,1],trip[j,2]]){
score.causal[trip[j,1],trip[j,2]] <- trip[j,4]
}
if(!is.na(trip[j,4]) && !is.nan(trip[j,4]) && trip[j,4] < score.causal[trip[j,3],trip[j,2]]){
score.causal[trip[j,3],trip[j,2]] <- trip[j,4]
}
}
}
}
} else {
## no causality inference, all connected nodes are parents
res.netw[ ,i] <- mrmr[ , predn[i]]
res.netw[is.na(res.netw[ ,i]),i] <- -1
}
}
}
if(causal) {
if(!all(is.infinite(score.causal))) { score.causal <- score.causal/(-max(abs(score.causal[!is.infinite(score.causal)]))) }
score.causal[is.na(score.causal) | is.infinite(score.causal)] <- -1
res.netw <- score.causal[,predn]
}
########################
## (1-w)*M+w*P weighted score from prior knowledge and data
########################
score <- (1-priors.weight)*res.netw+priors.weight*priors[ , predn, drop=FALSE]
## no self-loops
diag(score[dimnames(score)[[2]], dimnames(score)[[2]]]) <- -1
for(j in 1:length(predn)){
tmp.s <- sort(score[,j],decreasing=TRUE,index.return=TRUE)
ind.rm <- (which(tmp.s$x<=0))
if(length(tmp.s$x[-ind.rm])>0){
res[j,(1:(length(tmp.s$x[-ind.rm])))] <- names(tmp.s$x[-ind.rm])
if(length(tmp.s$x[-ind.rm])>maxparents){
res[j,((maxparents+1):(length(tmp.s$x[-ind.rm])))] <- NA
}
}
}
return(list("parents"=res, "score"=score))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.