Nothing
## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## -----------------------------------------------------------------------------
library(peco)
library(SingleCellExperiment)
library(doParallel)
library(foreach)
## -----------------------------------------------------------------------------
data("training_human")
## -----------------------------------------------------------------------------
data("sce_top101genes")
assays(sce_top101genes)
## -----------------------------------------------------------------------------
sce_top101genes <- data_transform_quantile(sce_top101genes)
assays(sce_top101genes)
## -----------------------------------------------------------------------------
pred_top101genes <- cycle_npreg_outsample(
Y_test=sce_top101genes,
sigma_est=training_human$sigma[rownames(sce_top101genes),],
funs_est=training_human$cellcycle_function[rownames(sce_top101genes)],
method.trend="trendfilter",
ncores=1,
get_trend_estimates=FALSE)
## -----------------------------------------------------------------------------
head(colData(pred_top101genes$Y)$cellcycle_peco)
## -----------------------------------------------------------------------------
plot(y=assay(pred_top101genes$Y,"cpm_quantNormed")["ENSG00000170312",],
x=colData(pred_top101genes$Y)$theta_shifted, main = "CDK1",
ylab = "quantile normalized expression")
points(y=training_human$cellcycle_function[["ENSG00000170312"]](seq(0,2*pi, length.out=100)),
x=seq(0,2*pi, length.out=100), col = "blue", pch =16)
## -----------------------------------------------------------------------------
# predicted cell time in the input data
theta_predict = colData(pred_top101genes$Y)$cellcycle_peco
names(theta_predict) = rownames(colData(pred_top101genes$Y))
# expression values of 10 genes in the input data
yy_input = assay(pred_top101genes$Y,"cpm_quantNormed")[1:6,]
# apply trendfilter to estimate cyclic gene expression trend
fit_cyclic <- fit_cyclical_many(Y=yy_input,
theta=theta_predict)
gene_symbols = rowData(pred_top101genes$Y)$hgnc[rownames(yy_input)]
par(mfrow=c(2,3))
for (i in 1:6) {
plot(y=yy_input[i,],
x=fit_cyclic$cellcycle_peco_ordered,
main = gene_symbols[i],
ylab = "quantile normalized expression")
points(y=fit_cyclic$cellcycle_function[[i]](seq(0,2*pi, length.out=100)),
x=seq(0,2*pi, length.out=100), col = "blue", pch =16)
}
## -----------------------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.