Nothing
context('peakPantheRAnnotation_outputAnnotationDiagnostic()')
## Test the output of annotation parameters as CSV and diagnostic plots
skip_if_not_installed('faahKO', minimum_version = '1.18.0')
library(faahKO)
# remove Rplots.pdf created by ggplot2
on.exit( tryCatch({ file.remove('./Rplots.pdf') }, error=function(e){ invisible() }, warning=function(w){ invisible() }) )
## Input data
# spectraPaths
input_spectraPaths <- c(system.file('cdf/KO/ko15.CDF', package = "faahKO"),
system.file('cdf/KO/ko16.CDF', package = "faahKO"),
system.file('cdf/KO/ko18.CDF', package = "faahKO"))
# targetFeatTable
input_targetFeatTable <- data.frame(matrix(vector(), 2, 8, dimnames=list(c(), c("cpdID", "cpdName", "rtMin", "rt", "rtMax", "mzMin", "mz", "mzMax"))), stringsAsFactors=FALSE)
input_targetFeatTable[1,] <- c("ID-1", "Cpd 1", 3310., 3344.888, 3390., 522.194778, 522.2, 522.205222)
input_targetFeatTable[2,] <- c("ID-2", "Cpd 2", 3280., 3385.577, 3440., 496.195038, 496.2, 496.204962)
input_targetFeatTable[,c(3:8)] <- sapply(input_targetFeatTable[,c(3:8)], as.numeric)
# FIR
input_FIR <- data.frame(matrix(vector(), 2, 4, dimnames=list(c(), c("rtMin", "rtMax", "mzMin", "mzMax"))), stringsAsFactors=FALSE)
input_FIR[1,] <- c(1., 2., 3., 4.)
input_FIR[2,] <- c(5., 6., 7., 8.)
# uROI
input_uROI <- data.frame(matrix(vector(), 2, 6, dimnames=list(c(), c("rtMin", "rt", "rtMax", "mzMin", "mz", "mzMax"))), stringsAsFactors=FALSE)
input_uROI[1,] <- c(9., 10., 11., 12., 13., 14.)
input_uROI[2,] <- c(15., 16., 17., 18., 19., 20.)
# TICs
input_TIC <- c(2410533091, 2524040155, 2332817115)
# cpdMetadata
input_cpdMetadata <- data.frame(matrix(data=c('a','b',1,2), nrow=2, ncol=2, dimnames=list(c(),c('testcol1','testcol2')), byrow=FALSE), stringsAsFactors=FALSE)
# spectraMetadata
input_spectraMetadata <- data.frame(matrix(data=c('c','d','e',3,4,5), nrow=3, ncol=2, dimnames=list(c(),c('testcol1','testcol2')), byrow=FALSE), stringsAsFactors=FALSE)
# acquisitionTime
input_acquisitionTime <- c(as.character(Sys.time()), as.character(Sys.time()+900), as.character(Sys.time()+1800))
# peakTables
# 1
peakTable1 <- data.frame(matrix(vector(), 2, 15, dimnames=list(c(), c("found", "rtMin", "rt", "rtMax", "mzMin", "mz", "mzMax", "peakArea", "maxIntMeasured", "maxIntPredicted", "is_filled", "ppm_error", "rt_dev_sec", "tailingFactor", "asymmetryFactor"))),stringsAsFactors=FALSE)
peakTable1[1,] <- c(TRUE, 3309.7589296586070, 3346.8277590361445, 3385.4098874628098, 522.194778, 522.20001220703125, 522.205222, 26133726.6811244078, 889280, 901015.80529226747, FALSE, 0.023376160866574614, 1.93975903614455092, 1.0153573486330891, 1.0268238825675249)
peakTable1[2,] <- c(TRUE, 3345.3766648628907, 3386.5288072289159, 3428.2788374983961, 496.20001220703125, 496.20001220703125, 496.20001220703125, 35472141.3330242932, 1128960, 1113576.69008227298, FALSE, 0.024601030353423384, 0.95180722891564074, 1.0053782620427065, 1.0093180792278085)
peakTable1[,c(1,11)] <- sapply(peakTable1[,c(1,11)], as.logical)
peakTable1[,c(2:10,12:15)] <- sapply(peakTable1[,c(2:10,12:15)], as.numeric)
# 2
peakTable2 <- data.frame(matrix(vector(), 2, 15, dimnames=list(c(), c("found", "rtMin", "rt", "rtMax", "mzMin", "mz", "mzMax", "peakArea", "maxIntMeasured", "maxIntPredicted", "is_filled", "ppm_error", "rt_dev_sec", "tailingFactor", "asymmetryFactor"))),stringsAsFactors=FALSE)
peakTable2[1,] <- c(TRUE, 3326.1063495851854, 3365.102, 3407.2726475892355, 522.194778, 522.20001220703125, 522.205222, 24545301.622835573, 761664, 790802.2209998488, FALSE, 0.023376160866574614, 0.2139999999999, 1.0339153786516375, 1.0630802030537212)
peakTable2[2,] <- c(TRUE, 3365.0238566258713, 3405.791, 3453.4049569205681, 496.195038, 496.20001220703125, 496.204962, 37207579.286265120, 1099264, 1098720.2929832144, FALSE, 0.024601030353423384, 20.2139999999999, 1.0839602450900523, 1.1717845972583161)
peakTable2[,c(1,11)] <- sapply(peakTable2[,c(1,11)], as.logical)
peakTable2[,c(2:10,12:15)] <- sapply(peakTable2[,c(2:10,12:15)], as.numeric)
# 3
peakTable3 <- data.frame(matrix(vector(), 2, 15, dimnames=list(c(), c("found", "rtMin", "rt", "rtMax", "mzMin", "mz", "mzMax", "peakArea", "maxIntMeasured", "maxIntPredicted", "is_filled", "ppm_error", "rt_dev_sec", "tailingFactor", "asymmetryFactor"))),stringsAsFactors=FALSE)
peakTable3[1,] <- c(TRUE, 3333.8625894557053, 3368.233, 3407.4362838927614, 522.194778, 522.20001220703125, 522.205222, 21447174.404490683, 758336, 765009.9805796633, FALSE, 0.023376160866574614, 23.345000000000255, 1.0609102044546637, 1.1155310457756928)
peakTable3[2,] <- c(TRUE, 3373.3998828113113, 3413.4952530120481, 3454.4490330927388, 496.195038, 496.20001220703125, 496.204962, 35659353.614476241, 1149440, 1145857.7611069249, FALSE, 0.024601030353423384, 27.918253012047899, 1.0081407426394933, 1.0143315197994494)
peakTable3[,c(1,11)] <- sapply(peakTable3[,c(1,11)], as.logical)
peakTable3[,c(2:10,12:15)] <- sapply(peakTable3[,c(2:10,12:15)], as.numeric)
input_peakTables <- list(peakTable1, peakTable2, peakTable3)
# peakFit
# 1
cFit1.1 <- list(amplitude=162404.8057918259, center=3341.888, sigma=0.078786133031045896, gamma=0.0018336101984172684, fitStatus=2, curveModel="skewedGaussian")
class(cFit1.1) <- 'peakPantheR_curveFit'
cFit1.2 <- list(amplitude=199249.10572753669, center=3382.577, sigma=0.074904415304607966, gamma=0.0011471899372353885, fitStatus=2, curveModel="skewedGaussian")
class(cFit1.2) <- 'peakPantheR_curveFit'
# 2
cFit2.1 <- list(amplitude=124090.83425474487, center=3359.102, sigma=0.071061541060964212, gamma=0.0018336072657203239, fitStatus=2, curveModel="skewedGaussian")
class(cFit2.1) <- 'peakPantheR_curveFit'
cFit2.2 <- list(amplitude=151407.23415130575, center=3399.791, sigma=0.063753866057052563, gamma=0.001676782834598999, fitStatus=2, curveModel="skewedGaussian")
class(cFit2.2) <- 'peakPantheR_curveFit'
# 3
cFit3.1 <- list(amplitude=122363.51256736703, center=3362.233, sigma=0.075489598945304492, gamma=0.0025160536725299734, fitStatus=2, curveModel="skewedGaussian")
class(cFit3.1) <- 'peakPantheR_curveFit'
cFit3.2 <- list(amplitude=204749.86097918145, center=3409.182, sigma=0.075731781812843249, gamma=0.0013318670577834328, fitStatus=2, curveModel="skewedGaussian")
class(cFit3.2) <- 'peakPantheR_curveFit'
input_peakFit <- list(list(cFit1.1, cFit1.2), list(cFit2.1, cFit2.2), list(cFit3.1, cFit3.2))
# dataPoint
tmp_raw_data1 <- MSnbase::readMSData(input_spectraPaths[1], centroided=TRUE, mode='onDisk')
ROIDataPoints1 <- extractSignalRawData(tmp_raw_data1, rt=input_targetFeatTable[,c('rtMin','rtMax')], mz=input_targetFeatTable[,c('mzMin','mzMax')], verbose=FALSE)
tmp_raw_data2 <- MSnbase::readMSData(input_spectraPaths[2], centroided=TRUE, mode='onDisk')
ROIDataPoints2 <- extractSignalRawData(tmp_raw_data2, rt=input_targetFeatTable[,c('rtMin','rtMax')], mz=input_targetFeatTable[,c('mzMin','mzMax')], verbose=FALSE)
tmp_raw_data3 <- MSnbase::readMSData(input_spectraPaths[3], centroided=TRUE, mode='onDisk')
ROIDataPoints3 <- extractSignalRawData(tmp_raw_data3, rt=input_targetFeatTable[,c('rtMin','rtMax')], mz=input_targetFeatTable[,c('mzMin','mzMax')], verbose=FALSE)
input_dataPoints <- list(ROIDataPoints1, ROIDataPoints2, ROIDataPoints3)
# Object, fully filled
filledAnnotation <- peakPantheRAnnotation(spectraPaths=input_spectraPaths, targetFeatTable=input_targetFeatTable, FIR=input_FIR, uROI=input_uROI, useFIR=TRUE, uROIExist=TRUE, useUROI=TRUE, cpdMetadata=input_cpdMetadata, spectraMetadata=input_spectraMetadata, acquisitionTime=input_acquisitionTime, TIC=input_TIC, peakTables=input_peakTables, dataPoints=input_dataPoints, peakFit=input_peakFit, isAnnotated=TRUE)
test_that('default output, with plots and colours, serial, verbose, no verbose', {
# temporary file
savePath1 <- tempdir()
# clear temp folder
suppressWarnings(do.call(file.remove, list(list.files(savePath1, full.names = TRUE))))
# input
input_annotation <- filledAnnotation
input_colour <- c('blue', 'green', 'red')
# expected
expected_path_CSV <- file.path(savePath1, "annotationParameters_summary.csv")
expected_path_plot1 <- file.path(savePath1, "cpd_1.png")
expected_path_plot2 <- file.path(savePath1, "cpd_2.png")
expected_CSV <- data.frame(matrix(nrow=2,ncol=21,dimnames=list(c(), c('cpdID', 'cpdName', 'X', 'ROI_rt', 'ROI_mz','ROI_rtMin', 'ROI_rtMax', 'ROI_mzMin', 'ROI_mzMax', 'X', 'uROI_rtMin', 'uROI_rtMax', 'uROI_mzMin', 'uROI_mzMax', 'uROI_rt', 'uROI_mz', 'X', 'FIR_rtMin', 'FIR_rtMax', 'FIR_mzMin', 'FIR_mzMax'))))
expected_CSV[1,] <- c('ID-1', 'Cpd 1', '|', 3344.888, 522.2, 3310., 3390., 522.194778, 522.205222, '|', 9., 11., 12., 14., 10., 13., '|', 1., 2., 3., 4.)
expected_CSV[2,] <- c('ID-2', 'Cpd 2', '|', 3385.577, 496.2, 3280., 3440., 496.195038, 496.204962, '|', 15., 17., 18., 20., 16., 19., '|', 5., 6., 7., 8.)
expected_CSV[,-c(1,2,3,10,17)] <- sapply(expected_CSV[,-c(1,2,3,10,17)], as.numeric)
# results (output, warnings and messages)
result_save <- evaluate_promise(outputAnnotationDiagnostic(input_annotation, saveFolder=savePath1, savePlots=TRUE, sampleColour=input_colour, verbose=TRUE, ncores=0))
# Check CSV has been produced
expect_true(file.exists(expected_path_CSV))
# Check plot have been saved
expect_true(file.exists(expected_path_plot1))
expect_true(file.exists(expected_path_plot2))
# Check values saved
saved_CSV <- read.csv(expected_path_CSV, header=TRUE, sep=",", quote="\"", stringsAsFactors=FALSE)
expect_equal(saved_CSV, expected_CSV)
# Check result messages (save path)
expect_equal(length(result_save$messages), 4)
## no verbose
savePath2 <- tempdir()
# clear temp folder
suppressWarnings(do.call(file.remove, list(list.files(savePath2, full.names = TRUE))))
result_save2 <- evaluate_promise(outputAnnotationDiagnostic(input_annotation, saveFolder=savePath2, savePlots=TRUE, sampleColour=input_colour, verbose=FALSE, ncores=0)
)
expect_equal(length(result_save2$messages), 0)
})
test_that('default output, with plots and colours, parallel, verbose, no verbose', {
# temporary file
savePath3 <- tempdir()
# clear temp folder
suppressWarnings(do.call(file.remove, list(list.files(savePath3, full.names = TRUE))))
# input
input_annotation <- filledAnnotation
input_colour <- c('blue', 'green', 'red')
# expected
expected_path_CSV <- file.path(savePath3, "annotationParameters_summary.csv")
expected_path_plot1 <- file.path(savePath3, "cpd_1.png")
expected_path_plot2 <- file.path(savePath3, "cpd_2.png")
expected_CSV <- data.frame(matrix(nrow=2,ncol=21,dimnames=list(c(), c('cpdID', 'cpdName', 'X', 'ROI_rt', 'ROI_mz','ROI_rtMin', 'ROI_rtMax', 'ROI_mzMin', 'ROI_mzMax', 'X', 'uROI_rtMin', 'uROI_rtMax', 'uROI_mzMin', 'uROI_mzMax', 'uROI_rt', 'uROI_mz', 'X', 'FIR_rtMin', 'FIR_rtMax', 'FIR_mzMin', 'FIR_mzMax'))))
expected_CSV[1,] <- c('ID-1', 'Cpd 1', '|', 3344.888, 522.2, 3310., 3390., 522.194778, 522.205222, '|', 9., 11., 12., 14., 10., 13., '|', 1., 2., 3., 4.)
expected_CSV[2,] <- c('ID-2', 'Cpd 2', '|', 3385.577, 496.2, 3280., 3440., 496.195038, 496.204962, '|', 15., 17., 18., 20., 16., 19., '|', 5., 6., 7., 8.)
expected_CSV[,-c(1,2,3,10,17)] <- sapply(expected_CSV[,-c(1,2,3,10,17)], as.numeric)
# results (output, warnings and messages)
result_save3 <- evaluate_promise(outputAnnotationDiagnostic(input_annotation, saveFolder=savePath3, savePlots=TRUE, sampleColour=input_colour, verbose=TRUE, ncores=1))
# Check CSV has been produced
expect_true(file.exists(expected_path_CSV))
# Check plot have been saved
expect_true(file.exists(expected_path_plot1))
expect_true(file.exists(expected_path_plot2))
# Check values saved
saved_CSV <- read.csv(expected_path_CSV, header=TRUE, sep=",", quote="\"", stringsAsFactors=FALSE)
expect_equal(saved_CSV, expected_CSV)
# Check result messages (save path)
expect_equal(length(result_save3$messages), 3)
## no verbose
savePath4 <- tempdir()
# clear temp folder
suppressWarnings(do.call(file.remove, list(list.files(savePath4, full.names = TRUE))))
result_save4 <- evaluate_promise(outputAnnotationDiagnostic(input_annotation, saveFolder=savePath4, savePlots=TRUE, sampleColour=input_colour, verbose=FALSE, ncores=1)
)
expect_equal(length(result_save4$messages), 0)
})
test_that('no plot saved, verbose', {
# temporary file
savePath5 <- tempdir()
# clear temp folder
suppressWarnings(do.call(file.remove, list(list.files(savePath5, full.names = TRUE))))
# input
input_annotation <- filledAnnotation
# expected
expected_path_CSV <- file.path(savePath5, "annotationParameters_summary.csv")
expected_path_plot1 <- file.path(savePath5, "cpd_1.png")
expected_path_plot2 <- file.path(savePath5, "cpd_2.png")
expected_CSV <- data.frame(matrix(nrow=2,ncol=21,dimnames=list(c(), c('cpdID', 'cpdName', 'X', 'ROI_rt', 'ROI_mz','ROI_rtMin', 'ROI_rtMax', 'ROI_mzMin', 'ROI_mzMax', 'X', 'uROI_rtMin', 'uROI_rtMax', 'uROI_mzMin', 'uROI_mzMax', 'uROI_rt', 'uROI_mz', 'X', 'FIR_rtMin', 'FIR_rtMax', 'FIR_mzMin', 'FIR_mzMax'))))
expected_CSV[1,] <- c('ID-1', 'Cpd 1', '|', 3344.888, 522.2, 3310., 3390., 522.194778, 522.205222, '|', 9., 11., 12., 14., 10., 13., '|', 1., 2., 3., 4.)
expected_CSV[2,] <- c('ID-2', 'Cpd 2', '|', 3385.577, 496.2, 3280., 3440., 496.195038, 496.204962, '|', 15., 17., 18., 20., 16., 19., '|', 5., 6., 7., 8.)
expected_CSV[,-c(1,2,3,10,17)] <- sapply(expected_CSV[,-c(1,2,3,10,17)], as.numeric)
# results (output, warnings and messages)
result_save5 <- evaluate_promise(outputAnnotationDiagnostic(input_annotation, saveFolder=savePath5, savePlots=FALSE, verbose=TRUE))
# Check CSV has been produced
expect_true(file.exists(expected_path_CSV))
# Check plot have not been saved
expect_false(file.exists(expected_path_plot1))
expect_false(file.exists(expected_path_plot2))
# Check values saved
saved_CSV <- read.csv(expected_path_CSV, header=TRUE, sep=",", quote="\"", stringsAsFactors=FALSE)
expect_equal(saved_CSV, expected_CSV)
# Check result messages (save path)
expect_equal(length(result_save5$messages), 1)
})
test_that('no data to plot, serial, verbose', {
# temporary file
savePath6 <- tempdir()
# clear temp folder
suppressWarnings(do.call(file.remove, list(list.files(savePath6, full.names = TRUE))))
# input
input_annotation <- peakPantheRAnnotation(spectraPaths=input_spectraPaths, targetFeatTable=input_targetFeatTable)
# expected
expected_path_CSV <- file.path(savePath6, "annotationParameters_summary.csv")
expected_path_plot1 <- file.path(savePath6, "cpd_1.png")
expected_path_plot2 <- file.path(savePath6, "cpd_2.png")
expected_CSV <- data.frame(matrix(nrow=2,ncol=21,dimnames=list(c(), c('cpdID', 'cpdName', 'X', 'ROI_rt', 'ROI_mz','ROI_rtMin', 'ROI_rtMax', 'ROI_mzMin', 'ROI_mzMax', 'X', 'uROI_rtMin', 'uROI_rtMax', 'uROI_mzMin', 'uROI_mzMax', 'uROI_rt', 'uROI_mz', 'X', 'FIR_rtMin', 'FIR_rtMax', 'FIR_mzMin', 'FIR_mzMax'))))
expected_CSV[1,] <- c('ID-1', 'Cpd 1', '|', 3344.888, 522.2, 3310., 3390., 522.194778, 522.205222, '|', NA, NA, NA, NA, NA, NA, '|', NA, NA, NA, NA)
expected_CSV[2,] <- c('ID-2', 'Cpd 2', '|', 3385.577, 496.2, 3280., 3440., 496.195038, 496.204962, '|', NA, NA, NA, NA, NA, NA, '|', NA, NA, NA, NA)
expected_CSV[,-c(1,2,3,10:21)] <- sapply(expected_CSV[,-c(1,2,3,10:21)], as.numeric)
expected_CSV[,c(11:16, 18:21)] <- sapply(expected_CSV[,c(11:16, 18:21)], as.logical)
expected_message <- c("Saving diagnostic plots:\n", "Warning: the object has not been annotated, return an empty diagnostic plot list\n", " No plot to save for compound 1/2\n", "Warning: the object has not been annotated, return an empty diagnostic plot list\n", " No plot to save for compound 2/2\n" )
# results (output, warnings and messages)
result_save6 <- evaluate_promise(outputAnnotationDiagnostic(input_annotation, saveFolder=savePath6, savePlots=TRUE, verbose=TRUE, ncores=0))
# Check CSV has been produced
expect_true(file.exists(expected_path_CSV))
# Check plot have not been saved
expect_false(file.exists(expected_path_plot1))
expect_false(file.exists(expected_path_plot2))
# Check values saved
saved_CSV <- read.csv(expected_path_CSV, header=TRUE, sep=",", quote="\"", stringsAsFactors=FALSE)
expect_equal(saved_CSV, expected_CSV)
# Check result messages (without save path)
expect_equal(length(result_save6$messages), 6)
expect_equal(result_save6$messages[2:6], expected_message)
})
test_that('no data to plot, parallel, verbose', {
## 'No plot to save' message cannot come back from the parallel backend
# temporary file
savePath7 <- tempdir()
# clear temp folder
suppressWarnings(do.call(file.remove, list(list.files(savePath7, full.names = TRUE))))
# input
input_annotation <- peakPantheRAnnotation(spectraPaths=input_spectraPaths, targetFeatTable=input_targetFeatTable)
# expected
expected_path_CSV <- file.path(savePath7, "annotationParameters_summary.csv")
expected_path_plot1 <- file.path(savePath7, "cpd_1.png")
expected_path_plot2 <- file.path(savePath7, "cpd_2.png")
expected_CSV <- data.frame(matrix(nrow=2,ncol=21,dimnames=list(c(), c('cpdID', 'cpdName', 'X', 'ROI_rt', 'ROI_mz','ROI_rtMin', 'ROI_rtMax', 'ROI_mzMin', 'ROI_mzMax', 'X', 'uROI_rtMin', 'uROI_rtMax', 'uROI_mzMin', 'uROI_mzMax', 'uROI_rt', 'uROI_mz', 'X', 'FIR_rtMin', 'FIR_rtMax', 'FIR_mzMin', 'FIR_mzMax'))))
expected_CSV[1,] <- c('ID-1', 'Cpd 1', '|', 3344.888, 522.2, 3310., 3390., 522.194778, 522.205222, '|', NA, NA, NA, NA, NA, NA, '|', NA, NA, NA, NA)
expected_CSV[2,] <- c('ID-2', 'Cpd 2', '|', 3385.577, 496.2, 3280., 3440., 496.195038, 496.204962, '|', NA, NA, NA, NA, NA, NA, '|', NA, NA, NA, NA)
expected_CSV[,-c(1,2,3,10:21)] <- sapply(expected_CSV[,-c(1,2,3,10:21)], as.numeric)
expected_CSV[,c(11:16, 18:21)] <- sapply(expected_CSV[,c(11:16, 18:21)], as.logical)
# results (output, warnings and messages)
result_save7 <- evaluate_promise(outputAnnotationDiagnostic(input_annotation, saveFolder=savePath7, savePlots=TRUE, verbose=TRUE, ncores=1))
# Check CSV has been produced
expect_true(file.exists(expected_path_CSV))
# Check plot have not been saved
expect_false(file.exists(expected_path_plot1))
expect_false(file.exists(expected_path_plot2))
# Check values saved
saved_CSV <- read.csv(expected_path_CSV, header=TRUE, sep=",", quote="\"", stringsAsFactors=FALSE)
expect_equal(saved_CSV, expected_CSV)
# Check result messages (without save path)
expect_equal(length(result_save7$messages), 3)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.