Nothing
context('annotationDiagnosticMultiplot()')
## Test the generation of multiplot for each compound
skip_if_not_installed('faahKO', minimum_version = '1.18.0')
library(faahKO)
# remove Rplots.pdf created by ggplot2
on.exit( tryCatch({ file.remove('./Rplots.pdf') }, error=function(e){ invisible() }, warning=function(w){ invisible() }) )
## Input data
# spectraPaths
input_spectraPaths <- c(system.file('cdf/KO/ko15.CDF', package = "faahKO"),
system.file('cdf/KO/ko16.CDF', package = "faahKO"),
system.file('cdf/KO/ko18.CDF', package = "faahKO"))
# targetFeatTable
input_targetFeatTable <- data.frame(matrix(vector(), 2, 8, dimnames=list(c(), c("cpdID", "cpdName", "rtMin", "rt", "rtMax", "mzMin", "mz", "mzMax"))), stringsAsFactors=FALSE)
input_targetFeatTable[1,] <- c("ID-1", "Cpd 1", 3310., 3344.888, 3390., 522.194778, 522.2, 522.205222)
input_targetFeatTable[2,] <- c("ID-2", "Cpd 2", 3280., 3385.577, 3440., 496.195038, 496.2, 496.204962)
input_targetFeatTable[,c(3:8)] <- sapply(input_targetFeatTable[,c(3:8)], as.numeric)
# acquisitionTime
input_acquisitionTime <- c(Sys.time(), Sys.time()+900, Sys.time()+1800)
# peakFit
# 1
cFit1.1 <- list(amplitude=162404.8057918259, center=3341.888, sigma=0.078786133031045896, gamma=0.0018336101984172684, fitStatus=2, curveModel="skewedGaussian")
class(cFit1.1) <- 'peakPantheR_curveFit'
cFit1.2 <- list(amplitude=199249.10572753669, center=3382.577, sigma=0.074904415304607966, gamma=0.0011471899372353885, fitStatus=2, curveModel="skewedGaussian")
class(cFit1.2) <- 'peakPantheR_curveFit'
# 2
cFit2.1 <- list(amplitude=124090.83425474487, center=3359.102, sigma=0.071061541060964212, gamma=0.0018336072657203239, fitStatus=2, curveModel="skewedGaussian")
class(cFit2.1) <- 'peakPantheR_curveFit'
cFit2.2 <- list(amplitude=151407.23415130575, center=3399.791, sigma=0.063753866057052563, gamma=0.001676782834598999, fitStatus=2, curveModel="skewedGaussian")
class(cFit2.2) <- 'peakPantheR_curveFit'
# 3
cFit3.1 <- list(amplitude=122363.51256736703, center=3362.233, sigma=0.075489598945304492, gamma=0.0025160536725299734, fitStatus=2, curveModel="skewedGaussian")
class(cFit3.1) <- 'peakPantheR_curveFit'
cFit3.2 <- list(amplitude=204749.86097918145, center=3409.182, sigma=0.075731781812843249, gamma=0.0013318670577834328, fitStatus=2, curveModel="skewedGaussian")
class(cFit3.2) <- 'peakPantheR_curveFit'
input_peakFit <- list(list(cFit1.1, cFit1.2), list(cFit2.1, cFit2.2), list(cFit3.1, cFit3.2))
# dataPoint
tmp_raw_data1 <- MSnbase::readMSData(input_spectraPaths[1], centroided=TRUE, mode='onDisk')
ROIDataPoints1 <- extractSignalRawData(tmp_raw_data1, rt=input_targetFeatTable[,c('rtMin','rtMax')], mz=input_targetFeatTable[,c('mzMin','mzMax')], verbose=FALSE)
tmp_raw_data2 <- MSnbase::readMSData(input_spectraPaths[2], centroided=TRUE, mode='onDisk')
ROIDataPoints2 <- extractSignalRawData(tmp_raw_data2, rt=input_targetFeatTable[,c('rtMin','rtMax')], mz=input_targetFeatTable[,c('mzMin','mzMax')], verbose=FALSE)
tmp_raw_data3 <- MSnbase::readMSData(input_spectraPaths[3], centroided=TRUE, mode='onDisk')
ROIDataPoints3 <- extractSignalRawData(tmp_raw_data3, rt=input_targetFeatTable[,c('rtMin','rtMax')], mz=input_targetFeatTable[,c('mzMin','mzMax')], verbose=FALSE)
input_dataPoints <- list(ROIDataPoints1, ROIDataPoints2, ROIDataPoints3)
# input annotationDiagnosticPlotList
# compound 1
expected_EICFit1 <- peakPantheR_plotEICFit(ROIDataPointSampleList = list(ROIDataPoints1[[1]], ROIDataPoints2[[1]], ROIDataPoints3[[1]]),
curveFitSampleList = list(cFit1.1, cFit1.2, cFit1.2),
rtMin = c(3309.7589296586070, 3326.1063495851854, 3333.8625894557053),
rtMax = c(3385.4098874628098, 3407.2726475892355, 3407.4362838927614),
sampling = 250,
sampleColour = NULL,
verbose = FALSE)
expected_rtPeakwidthVert1 <- peakPantheR_plotPeakwidth(apexValue = c(3346.8277590361445, 3365.102, 3368.233),
widthMin = c(3309.7589296586070, 3326.1063495851854, 3333.8625894557053),
widthMax = c(3385.4098874628098, 3407.2726475892355, 3407.4362838927614),
acquTime = input_acquisitionTime,
sampleColour = NULL,
varName = 'Retention Time (sec)',
rotateAxis = TRUE,
verbose = FALSE)
expected_rtPeakwidthHorzRunOrder1 <- peakPantheR_plotPeakwidth(apexValue = c(3346.8277590361445, 3365.102, 3368.233),
widthMin = c(3309.7589296586070, 3326.1063495851854, 3333.8625894557053),
widthMax = c(3385.4098874628098, 3407.2726475892355, 3407.4362838927614),
acquTime = input_acquisitionTime,
sampleColour = NULL,
varName = 'Retention Time (sec)',
rotateAxis = FALSE,
verbose = FALSE)
expected_mzPeakwidthHorzRunOrder1 <- peakPantheR_plotPeakwidth(apexValue = c(522.20001220703125, 522.20001220703125, 522.20001220703125),
widthMin = c(522.194778, 522.194778, 522.194778),
widthMax = c(522.205222, 522.205222, 522.205222),
acquTime = input_acquisitionTime,
sampleColour = NULL,
varName = 'm/z',
rotateAxis = FALSE,
verbose = FALSE)
expected_areaRunOrder1 <- peakPantheR_plotPeakwidth(apexValue = c(26133726.681124408, 24545301.622835573, 21447174.404490683),
widthMin = NULL,
widthMax = NULL,
acquTime = input_acquisitionTime,
sampleColour = NULL,
varName = 'Peak Area',
rotateAxis = FALSE,
verbose = FALSE)
expected_rtHistogram1 <- plotHistogram(var = c(3346.8277590361445, 3365.102, 3368.233),
varName='Retention Time (sec)',
density=TRUE)
expected_mzHistogram1 <- plotHistogram(var = c(522.20001220703125, 522.20001220703125, 522.20001220703125),
varName='m/z',
density=TRUE)
expected_areaHistogram1 <- plotHistogram(var = c(26133726.681124408, 24545301.622835573, 21447174.404490683),
varName='Peak Area',
density=TRUE)
# compound 2
expected_EICFit2 <- peakPantheR_plotEICFit(ROIDataPointSampleList = list(ROIDataPoints1[[2]], ROIDataPoints2[[2]], ROIDataPoints3[[2]]),
curveFitSampleList = list(cFit1.2, cFit2.2, cFit3.2),
rtMin = c(3345.3766648628907, 3365.0238566258713, 3373.3998828113113),
rtMax = c(3428.2788374983961, 3453.4049569205681, 3454.4490330927388),
sampling = 250,
sampleColour = NULL,
verbose = FALSE)
expected_rtPeakwidthVert2 <- peakPantheR_plotPeakwidth(apexValue = c(3386.5288072289159, 3405.791, 3413.4952530120481),
widthMin = c(3345.3766648628907, 3365.0238566258713, 3373.3998828113113),
widthMax = c(3428.2788374983961, 3453.4049569205681, 3454.4490330927388),
acquTime = NULL,
sampleColour = NULL,
varName = 'Retention Time (sec)',
rotateAxis = TRUE,
verbose = FALSE)
expected_rtPeakwidthHorzRunOrder2 <- peakPantheR_plotPeakwidth(apexValue = c(3386.5288072289159, 3405.791, 3413.4952530120481),
widthMin = c(3345.3766648628907, 3365.0238566258713, 3373.3998828113113),
widthMax = c(3428.2788374983961, 3453.4049569205681, 3454.4490330927388),
acquTime = input_acquisitionTime,
sampleColour = NULL,
varName = 'Retention Time (sec)',
rotateAxis = FALSE,
verbose = FALSE)
expected_mzPeakwidthHorzRunOrder2 <- peakPantheR_plotPeakwidth(apexValue = c(496.20001220703125, 496.20001220703125, 496.20001220703125),
widthMin = c(496.20001220703125, 496.195038, 496.195038),
widthMax = c(496.20001220703125, 496.204962, 496.204962),
acquTime = input_acquisitionTime,
sampleColour = NULL,
varName = 'm/z',
rotateAxis = FALSE,
verbose = FALSE)
expected_areaRunOrder2 <- peakPantheR_plotPeakwidth(apexValue = c(35472141.333024293, 37207579.286265120, 35659353.614476241),
widthMin = NULL,
widthMax = NULL,
acquTime = input_acquisitionTime,
sampleColour = NULL,
varName = 'Peak Area',
rotateAxis = FALSE,
verbose = FALSE)
expected_rtHistogram2 <- plotHistogram(var = c(3386.5288072289159, 3405.791, 3413.4952530120481),
varName='Retention Time (sec)',
density=TRUE)
expected_mzHistogram2 <- plotHistogram(var = c(496.20001220703125, 496.20001220703125, 496.20001220703125),
varName='m/z',
density=TRUE)
expected_areaHistogram2 <- plotHistogram(var = c(35472141.333024293, 37207579.286265120, 35659353.614476241),
varName='Peak Area',
density=TRUE)
# annotationDiagnosticPlotList
input_annotationDiagnosticPlotList <- list(list(EICFit = expected_EICFit1,
rtPeakwidthVert = expected_rtPeakwidthVert1,
rtPeakwidthHorzRunOrder = expected_rtPeakwidthHorzRunOrder1,
mzPeakwidthHorzRunOrder = expected_mzPeakwidthHorzRunOrder1,
areaRunOrder = expected_areaRunOrder1,
rtHistogram = expected_rtHistogram1,
mzHistogram = expected_mzHistogram1,
areaHistogram = expected_areaHistogram1,
title = 'test compound 1'),
list(EICFit = expected_EICFit2,
rtPeakwidthVert = expected_rtPeakwidthVert2,
rtPeakwidthHorzRunOrder = expected_rtPeakwidthHorzRunOrder2,
mzPeakwidthHorzRunOrder = expected_mzPeakwidthHorzRunOrder2,
areaRunOrder = expected_areaRunOrder2,
rtHistogram = expected_rtHistogram2,
mzHistogram = expected_mzHistogram2,
areaHistogram = expected_areaHistogram2,
title = 'test compound 2'))
test_that('default multiplot', {
# input
input_plots <- input_annotationDiagnosticPlotList
# expected
gtable_class <- sort(c("gtable", "gTree", "grob", "gDesc"))
# results (output, warnings and messages)
result_multiplot <- evaluate_promise(annotationDiagnosticMultiplot(input_plots))
# Check plots generated
expect_equal(length(result_multiplot$result), 2)
expect_equal(sort(class(result_multiplot$result[[1]])), gtable_class)
expect_equal(length(result_multiplot$result[[1]]), 9)
expect_equal(sort(class(result_multiplot$result[[2]])), gtable_class)
expect_equal(length(result_multiplot$result[[2]]), 9)
})
test_that('raise warnings/error', {
# expected
gtable_class <- sort(c("gtable", "gTree", "grob", "gDesc"))
expected_message <- "Required plots missing for compound #1\n"
# missing EICFit for cpd 1
input_missEICFit <- input_annotationDiagnosticPlotList
input_missEICFit[[1]] <- input_missEICFit[[1]][c("rtPeakwidthVert", "rtPeakwidthHorzRunOrder", "mzPeakwidthHorzRunOrder", "areaRunOrder", "rtHistogram", "mzHistogram", "areaHistogram", "title")]
result_warn1 <- evaluate_promise(annotationDiagnosticMultiplot(input_missEICFit))
expect_equal(result_warn1$message[[1]], expected_message)
expect_equal(result_warn1$result[[1]], NULL)
expect_equal(sort(class(result_warn1$result[[2]])), gtable_class)
expect_equal(length(result_warn1$result[[2]]), 9)
# missing rtPeakwidthVert for cpd 1
input_missrtPeakwidthVert <- input_annotationDiagnosticPlotList
input_missrtPeakwidthVert[[1]] <- input_missrtPeakwidthVert[[1]][c("EICFit", "rtPeakwidthHorzRunOrder", "mzPeakwidthHorzRunOrder", "areaRunOrder", "rtHistogram", "mzHistogram", "areaHistogram", "title")]
result_warn2 <- evaluate_promise(annotationDiagnosticMultiplot(input_missrtPeakwidthVert))
expect_equal(result_warn2$message[[1]], expected_message)
expect_equal(result_warn2$result[[1]], NULL)
expect_equal(sort(class(result_warn2$result[[2]])), gtable_class)
expect_equal(length(result_warn2$result[[2]]), 9)
# missing rtPeakwidthHorzRunOrder for cpd 1
input_missrtPeakwidthHorzRunOrder <- input_annotationDiagnosticPlotList
input_missrtPeakwidthHorzRunOrder[[1]] <- input_missrtPeakwidthHorzRunOrder[[1]][c("EICFit", "rtPeakwidthVert", "mzPeakwidthHorzRunOrder", "areaRunOrder", "rtHistogram", "mzHistogram", "areaHistogram", "title")]
result_warn3 <- evaluate_promise(annotationDiagnosticMultiplot(input_missrtPeakwidthHorzRunOrder))
expect_equal(result_warn3$message[[1]], expected_message)
expect_equal(result_warn3$result[[1]], NULL)
expect_equal(sort(class(result_warn3$result[[2]])), gtable_class)
expect_equal(length(result_warn3$result[[2]]), 9)
# missing mzPeakwidthHorzRunOrder for cpd 1
input_missmzPeakwidthHorzRunOrder <- input_annotationDiagnosticPlotList
input_missmzPeakwidthHorzRunOrder[[1]] <- input_missmzPeakwidthHorzRunOrder[[1]][c("EICFit", "rtPeakwidthVert", "rtPeakwidthHorzRunOrder", "areaRunOrder", "rtHistogram", "mzHistogram", "areaHistogram")]
result_warn4 <- evaluate_promise(annotationDiagnosticMultiplot(input_missmzPeakwidthHorzRunOrder))
expect_equal(result_warn4$message[[1]], expected_message)
expect_equal(result_warn4$result[[1]], NULL)
expect_equal(sort(class(result_warn4$result[[2]])), gtable_class)
expect_equal(length(result_warn4$result[[2]]), 9)
# missing areaRunOrder for cpd 1
input_missareaRunOrder <- input_annotationDiagnosticPlotList
input_missareaRunOrder[[1]] <- input_missareaRunOrder[[1]][c("EICFit", "rtPeakwidthVert", "rtPeakwidthHorzRunOrder", "mzPeakwidthHorzRunOrder", "rtHistogram", "mzHistogram", "areaHistogram", "title")]
result_warn5 <- evaluate_promise(annotationDiagnosticMultiplot(input_missareaRunOrder))
expect_equal(result_warn5$message[[1]], expected_message)
expect_equal(result_warn5$result[[1]], NULL)
expect_equal(sort(class(result_warn5$result[[2]])), gtable_class)
expect_equal(length(result_warn5$result[[2]]), 9)
# missing rtHistogram for cpd 1
input_missrtHistogram <- input_annotationDiagnosticPlotList
input_missrtHistogram[[1]] <- input_missrtHistogram[[1]][c("EICFit", "rtPeakwidthVert", "rtPeakwidthHorzRunOrder", "mzPeakwidthHorzRunOrder", "areaRunOrder", "mzHistogram", "areaHistogram", "title")]
result_warn6 <- evaluate_promise(annotationDiagnosticMultiplot(input_missrtHistogram))
expect_equal(result_warn6$message[[1]], expected_message)
expect_equal(result_warn6$result[[1]], NULL)
expect_equal(sort(class(result_warn6$result[[2]])), gtable_class)
expect_equal(length(result_warn6$result[[2]]), 9)
# missing mzHistogram for cpd 1
input_missmzHistogram <- input_annotationDiagnosticPlotList
input_missmzHistogram[[1]] <- input_missmzHistogram[[1]][c("EICFit", "rtPeakwidthVert", "rtPeakwidthHorzRunOrder", "mzPeakwidthHorzRunOrder", "areaRunOrder", "rtHistogram", "areaHistogram", "title")]
result_warn7 <- evaluate_promise(annotationDiagnosticMultiplot(input_missmzHistogram))
expect_equal(result_warn7$message[[1]], expected_message)
expect_equal(result_warn7$result[[1]], NULL)
expect_equal(sort(class(result_warn7$result[[2]])), gtable_class)
expect_equal(length(result_warn7$result[[2]]), 9)
# missing areaHistogram for cpd 1
input_missareaHistogram <- input_annotationDiagnosticPlotList
input_missareaHistogram[[1]] <- input_missareaHistogram[[1]][c("EICFit", "rtPeakwidthVert", "rtPeakwidthHorzRunOrder", "mzPeakwidthHorzRunOrder", "areaRunOrder", "rtHistogram", "mzHistogram", "title")]
result_warn8 <- evaluate_promise(annotationDiagnosticMultiplot(input_missareaHistogram))
expect_equal(result_warn8$message[[1]], expected_message)
expect_equal(result_warn8$result[[1]], NULL)
expect_equal(sort(class(result_warn8$result[[2]])), gtable_class)
expect_equal(length(result_warn8$result[[2]]), 9)
# missing title for cpd 1
input_misstitleHistogram <- input_annotationDiagnosticPlotList
input_misstitleHistogram[[1]] <- input_misstitleHistogram[[1]][c("EICFit", "rtPeakwidthVert", "rtPeakwidthHorzRunOrder", "mzPeakwidthHorzRunOrder", "areaRunOrder", "rtHistogram", "mzHistogram", "areaHistogram")]
result_warn9 <- evaluate_promise(annotationDiagnosticMultiplot(input_misstitleHistogram))
expect_equal(result_warn9$message[[1]], expected_message)
expect_equal(result_warn9$result[[1]], NULL)
expect_equal(sort(class(result_warn9$result[[2]])), gtable_class)
expect_equal(length(result_warn9$result[[2]]), 9)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.