R/rtCorrection_utils.R

Defines functions fit_RANSAC_checkInput fit_RANSAC_checkFinalConvergence fit_RANSAC_coreOptimization dynamic_max_trials loss_squared loss_absolute fit_RANSAC fit_polynomial applyRTCorrection_checkInputParams applyRTCorrection_checkInput_checkReferenceTable applyRTCorrection_checkTargetFeatTable applyRTCorrection_checkInput applyRTCorrection_correctFeatTable peakPantheR_applyRTCorrection

Documented in peakPantheR_applyRTCorrection

#' Correct targeted retention time based on reference compounds
#'
#' Correct targeted features retention time using the RT and RT deviation of
#' previously fitted compounds. The `method` and `params` are used to select and
#' parametrise the retention time correction method employed. When `robust`
#' is set to TRUE, the RANSAC algorithm is used
#' to automatically flag outliers and robustify the correction function fitting.
#'
#' @param targetFeatTable a \code{\link{data.frame}} of compounds to target as
#' rows and parameters as columns: \code{cpdID} (str), \code{cpdName} (str),
#' \code{rtMin} (float in seconds), \code{rt} (float in seconds, or \emph{NA}),
#' \code{rtMax} (float in seconds), \code{mzMin} (float), \code{mz} (float or
#' \emph{NA}), \code{mzMax} (float).
#' @param referenceTable a \code{\link{data.frame}} of reference compound
#' information as rows and properties as columns: \code{cpdID} (str),
#' \code{cpdName} (str), \code{rt} (float), \code{rt_dev_sec} (float)
#' @param method (str) name of RT correction method to use (currently
#' \code{polynomial})
#' @param params (list) list of parameters to pass to
#' the each correction method.
#' Currently allowed inputs are \code{polynomialOrder} for
#' \code{method='polynomial'}
#' @param robust (bool) whether to use the RANSAC algorithm to flag and
#' ignore outliers during retention time correction
#' 
#' @return a targetFeatTable with corrected RT
peakPantheR_applyRTCorrection <- function(targetFeatTable, referenceTable,
    method='polynomial', params=list(polynomialOrder=3), robust=TRUE) {
    # Check inputs
    applyRTCorrection_checkInput(targetFeatTable, referenceTable,
                                method, robust)
    params <- applyRTCorrection_checkInputParams(params, method, referenceTable)

    if (dim(referenceTable)[1] == 1) {
        method <- 'constant'
    }
    ## Run correction
    correctedFeatTable <- applyRTCorrection_correctFeatTable(
    targetFeatTable, referenceTable, method, params, robust)
    return(correctedFeatTable)
}

# Run correction
applyRTCorrection_correctFeatTable <- function(targetFeatTable, referenceTable,
    method='polynomial', params=list(polynomialOrder=3), robust=TRUE) {

    corrected_targetFeatTable <- targetFeatTable
    corrected_targetFeatTable$isReference <- 'External set'
    if (method == 'polynomial') {
        if (isTRUE(robust)) {
            rtCorrectionOutput <- fit_RANSAC(referenceTable$rt,
        referenceTable$rt_dev_sec, polynomialOrder=params[['polynomialOrder']])

        which_outlier <-
            corrected_targetFeatTable$cpdID %in% referenceTable$cpdID[
            !rtCorrectionOutput$inlier]
        which_reference <-
        corrected_targetFeatTable$cpdID %in% referenceTable$cpdID[
            rtCorrectionOutput$inlier]
        corrected_targetFeatTable$isReference[which_outlier] <-
            'Reference set outlier'
        corrected_targetFeatTable$isReference[which_reference]<-'Reference set'
        }  else {
            rtCorrectionOutput <-
                fit_polynomial(referenceTable$rt, referenceTable$rt_dev_sec,
                    polynomialOrder=params[['polynomialOrder']])
            which_reference <-
                corrected_targetFeatTable$cpdID %in% referenceTable$cpdID
            corrected_targetFeatTable$isReference[which_reference] <-
                'Reference set'}
        # Get the correction outputs
        correctionFunction <- rtCorrectionOutput$model
        correctedRtDrift <- stats::predict(correctionFunction,
                            newdata=data.frame(x=targetFeatTable$rt))
        corrected_targetFeatTable$correctedRt <-
            corrected_targetFeatTable$rt - correctedRtDrift
        corrected_targetFeatTable$predictedRtDrift <- correctedRtDrift }
    else if (method == 'constant') {
        # {redicted drift = constant observed drift in the reference
        corrected_targetFeatTable$correctedRt <-
            corrected_targetFeatTable$rt - rep(referenceTable$rt_dev_sec,
                dim(corrected_targetFeatTable)[1])
        corrected_targetFeatTable$predictedRtDrift <-
            rep(referenceTable$rt_dev_sec, dim(corrected_targetFeatTable)[1])
        which_reference <-
            corrected_targetFeatTable$cpdID %in% referenceTable$cpdID
        corrected_targetFeatTable$isReference[which_reference]<- 'Reference set'
    }  # for future Rt correction algorithms, just extend the else if()
    return(corrected_targetFeatTable)
}

# applyRTCorrection check input
applyRTCorrection_checkInput <- function(targetFeatTable, referenceTable,
                                            method, robust) {
    ## Check targetFeatTable and reference Table
    applyRTCorrection_checkTargetFeatTable(targetFeatTable)
    applyRTCorrection_checkInput_checkReferenceTable(referenceTable)
    ## Check method
    KNOWN_CORRECTIONMETHODs <- c("polynomial", "constant")
    if (!(method %in% KNOWN_CORRECTIONMETHODs)) {
        stop('Error: \"method\" must be one of: \"polynomial\", \"constant\"')}
    if ((dim(referenceTable)[1] == 1) & (method != 'constant')) {
        stop("No function can be fitted with a single reference. ",
        "Use method=\`constant\` instead.") }

    if (method == 'constant') {
        if (dim(referenceTable)[1] > 1) {
            stop("`constant` Rt correction can ",
            "only use a single reference") } }

    ## Check robust argument
    if (!is.logical(robust)) { stop("robust must be either TRUE or FALSE")}
}

# check input targetFeatTable
applyRTCorrection_checkTargetFeatTable <- function(targetFeatTable) {
    # is data.frame
    if (!is(targetFeatTable, "data.frame")){
        stop("specified targetFeatTable is not a data.frame")
    }

    # required columns are present
    if (!all(c("cpdID", "cpdName", "rt",
            "rt_dev_sec") %in% colnames(targetFeatTable))){
        stop("expected columns in targetFeatTable ",
        "are \"cpdID\", \"cpdName\", ",
        "\"rt\", \"rt_dev_sec\"")
    }

    # column type
    if (dim(targetFeatTable)[1] != 0){
        if (!is.character(targetFeatTable$cpdID[1])){
            stop("targetFeatTable$cpdID must be character")
        }
        if (!is.character(targetFeatTable$cpdName[1])){
            stop("targetFeatTable$cpdName must be character")
        }
        if (!(is.numeric(targetFeatTable$rt[1]) |
                is.na(targetFeatTable$rt[1]))){
            stop("targetFeatTable$rt must be numeric or NA")
        }
        if (!(is.numeric(targetFeatTable$rt_dev_sec[1]) |
            is.na(targetFeatTable$rt_dev_sec[1]))) {
            stop("targetFeatTable$rt_dev_sec must be numeric or NA") }

    }
}

# check input referenceTable
applyRTCorrection_checkInput_checkReferenceTable <- function(referenceTable) {
    ## Check referenceTable
    # is data.frame
    if (!is(referenceTable, "data.frame")){
        stop("specified referenceTable is not a data.frame")
    }
    # required columns are present
    if (!all(c("cpdID", "cpdName", "rt", "rt_dev_sec") %in%
    colnames(referenceTable))){
        stop("expected columns in referenceTable are \"cpdID\", \"cpdName\", ",
        "\"rt\" and \"rt_dev_sec\"")
    }
    # column type
    if (dim(referenceTable)[1] != 0){
        if (!is.character(referenceTable$cpdID[1])){
            stop("referenceTable$cpdID must be character")
        }
        if (!is.character(referenceTable$cpdName[1])){
            stop("referenceTable$cpdName must be character")
        }
        if (!(is.numeric(referenceTable$rt[1]) | is.na(referenceTable$rt[1]))){
            stop("referenceTable$rt must be numeric or NA")
        }
        if (!(is.numeric(referenceTable$rt_dev_sec[1]) |
        is.na(referenceTable$rt_dev_sec[1]))){
            stop("referenceTable$rt_dev_sec must be numeric or NA") }
    }
}

# check input parameters
applyRTCorrection_checkInputParams <- function(params, method, referenceTable) {
    ## Check params input
    if (!is.list(params)) { stop('Check input, "params" must be list') }
    # Verify if parameters passed on params are adequate for chosen method
    if (is.list(params)) {
        if (method == 'polynomial') {
            if (!any(names(params) == 'polynomialOrder')) {
                stop("polynomialOrder must be provided in params") }
            else {
                if (!is(params[['polynomialOrder']], 'numeric')) {
                    stop("polynomialOrder must be an integer and equal ",
                    "or greater than 1") }
                else if (!isTRUE(all.equal(params[['polynomialOrder']],
                    as.integer(params[['polynomialOrder']]))) |
                    (params[['polynomialOrder']] < 1)) {
                    stop("polynomialOrder must be an ",
                    "integer and equal or greater than 1") }
                else if (params[['polynomialOrder']] >=
                dim(referenceTable)[1]) {
                    warning("`polynomialOrder` is larger than the number of ",
                    "references passed. `polynomialOrder` will be ",
                    "set equal to number of reference compounds - 1")
                    params[['polynomialOrder']] <- dim(referenceTable)[1] - 1}}
        }
    }
    return(params)
}

## ----------------------------------------------------------------------------
##        RANSAC
## ----------------------------------------------------------------------------
# New retention time calibration functions can be added below
# All fitting functions should have the following argument:
# of the kind x = theoretical rt, y= Deviation (Rt_{obs} - Rt{exp}}

# General purpose polynomial function - can be used for linear fits
fit_polynomial <- function(x, y, polynomialOrder, returnFitted=FALSE) {

    polyModel <- stats::lm(y ~ poly(x, degree=polynomialOrder))

    if (isTRUE(returnFitted)) {
        modelFitted <- stats::fitted(polyModel)
        modelResiduals <- stats::residuals(polyModel)
        return(list(model=polyModel, fitted=modelFitted,
                    residuals=modelResiduals))
    }
    else {return(list(model=polyModel))}
}

## Port of the RANSAC regressor from scikit-learn
fit_RANSAC <- function(x, y, polynomialOrder=3,
                        residual_threshold=NULL,
                        loss='absolute_loss',
                        min_samples=NULL,
                        max_trials = 1000, max_skips=Inf, stop_n_inliers=Inf,
                        stop_score=Inf, stop_probability=0.99) {

    loss_function <- fit_RANSAC_checkInput(x, y, polynomialOrder, loss)
    # If residual_threshold is NULL, use the MAD (median absolute deviation)
    # of the y variable as cutoff
    if (is.null(residual_threshold)) {
        residual_threshold <- stats::median(abs(y - stats::median(y)))
    }
    # Minimum number of samples - by default the max between
    # polynomial function degree + 1 and half of the dataset size
    if (is.null(min_samples)) {
        min_samples <- max(polynomialOrder + 1 , ceiling(0.5*length(x)))
    }

    ransacFit <- fit_RANSAC_coreOptimization(x, y,
    max_trials=max_trials, min_samples, polynomialOrder,
    loss_function,residual_threshold=residual_threshold,
    stop_n_inliers, stop_score, stop_probability)

    fit_RANSAC_checkFinalConvergence(ransacFit$inlier_mask_best,
                                    max_skips, ransacFit$n_skips_no_inliers)
    # estimate final model using all inliers
    final_fitted_regressor <- fit_polynomial(ransacFit$X_inlier_best,
                            ransacFit$y_inlier_best, polynomialOrder)
    inlier_mask <- ransacFit$inlier_mask_best
    return(list(model=final_fitted_regressor$model, inlier=inlier_mask))
}

# Absolute Loss function - part of RANSAC implementation
loss_absolute <- function(y_true, y_pred) {
    loss_value <- abs(y_true - y_pred)
    return(loss_value)
}

# Square loss function - part of RANSAC implementation
loss_squared <- function(y_true, y_pred) {
    loss_value <- (y_true - y_pred) ^ 2
    return(loss_value)
}

# dynamic max trials - part of the RANSAC implementation
dynamic_max_trials <- function(n_inliers, n_samples, min_samples, probability) {
    epsilon <- .Machine$double.eps
    inlier_ratio <- n_inliers / n_samples

    nom <- max(epsilon, 1 - probability)
    denom <- max(epsilon, 1 - inlier_ratio ^ min_samples)

    if (nom == 1) {return(0)}
    if (denom == 1) {return(Inf)}

    return(abs(ceiling(log(nom) / log(denom))))
}

# Core RANSAC algorithm
fit_RANSAC_coreOptimization <- function(x, y, max_trials,
    min_samples, polynomialOrder, loss_function, residual_threshold,
    stop_n_inliers=Inf, stop_score=Inf, stop_probability=0.99) {
    x_data <- data.frame(x, columns=c('x')) # data frame to call "predict.lm"
    n_trials<- 0
    n_skips_no_inliers <- 0
    n_inliers_best <- 0
    score_best <- 0
    while (n_trials < max_trials) {
        n_trials <- n_trials + 1
        data_subset_idx <- sample(seq(1, length(x)), min_samples, replace=FALSE)
        current_x <- x[data_subset_idx]
        current_y <- y[data_subset_idx]
        fitted_model_current_iteration <-
            tryCatch(fit_polynomial(current_x, current_y,
            polynomialOrder=polynomialOrder), error=function(e) e)
        if(inherits(fitted_model_current_iteration, "error")){
            n_skips_no_inliers <- n_skips_no_inliers + 1
            next }
        y_pred <- stats::predict(fitted_model_current_iteration$model,
                    newdata=x_data)
        residuals_subset <- loss_function(y, y_pred)  # residual calculation
        inlier_mask_subset <- residuals_subset < residual_threshold
        n_inliers_subset <- sum(inlier_mask_subset)
        # less inliers -> skip current random sample
        if (n_inliers_subset < n_inliers_best) {
            n_skips_no_inliers <- n_skips_no_inliers + 1
            next }
        # extract inlier data set
        inlier_idxs_subset <- seq(1, length(x))[inlier_mask_subset]
        X_inlier_subset <- x[inlier_idxs_subset]
        y_inlier_subset <- y[inlier_idxs_subset]
        score_subset <- summary(fit_polynomial(X_inlier_subset,
                        y_inlier_subset, polynomialOrder =
                        polynomialOrder)$model)$r.squared
        if ((n_inliers_subset == n_inliers_best) & (score_subset < score_best))
            {  next  } # same n_inliers but worse score = skip current random
        n_inliers_best <- n_inliers_subset
        score_best <- score_subset
        inlier_mask_best <- inlier_mask_subset
        X_inlier_best <- X_inlier_subset
        y_inlier_best <- y_inlier_subset
        max_trials <- min(max_trials, dynamic_max_trials(n_inliers_best,
        length(x), min_samples, stop_probability))
    if ((n_inliers_best >= stop_n_inliers) | (score_best >= stop_score))
    { break } } # break if sufficient number of inliers or score is reached
    return(list(X_inlier_best=X_inlier_best, y_inlier_best=y_inlier_best,
                n_skips_no_inliers=n_skips_no_inliers,
                inlier_mask_best=inlier_mask_best))
}

# check convergence - part of RANSAC implementation
fit_RANSAC_checkFinalConvergence <- function(inlier_mask_best, max_skips,
                                                n_skips_no_inliers) {
    # if none of the iterations met the required criteria
    if (is.null(inlier_mask_best)) {
        if ((n_skips_no_inliers) > max_skips) {
            warning("Number of skipped iterations larger than `max_skips`")
        } else {
            warning("RANSAC could not find a valid consensus set")
        }
    } else {
        if ((n_skips_no_inliers) > max_skips) {
            warning("RANSAC found a valid consensus set but exited
                    early due to skipping more iterations than
                    `max_skips`") }
    }
}

# check input - part of RANSAC implementation
fit_RANSAC_checkInput <- function(x,y, polynomialOrder, loss) {
    if (length(x) != length(y)) {
        stop('x and y must have the same length')
    }

    if (isFALSE(all.equal(polynomialOrder,
        as.integer(polynomialOrder)) | (polynomialOrder >= 1))) {
        stop("`polynomialOrder` must be an integer and equal or greater than 1")
    }
    # Select the loss function
    if (loss == "absolute_loss") {
        loss_function <- loss_absolute
    } else if (loss == "squared_loss") {
        loss_function <- loss_squared
    } else {
        stop("Allowed `loss` functions are `loss_squared` and `loss_absolute`")
    }
    return(loss_function)
    }

Try the peakPantheR package in your browser

Any scripts or data that you put into this service are public.

peakPantheR documentation built on Nov. 8, 2020, 6:38 p.m.