Nothing
#' @title Check if object is of class peakPantheR_curveFit
#'
#' @description Check if object is of class peakPantheR_curveFit
#' @param x object to test
#' @return (bool) TRUE or FALSE
is.peakPantheR_curveFit <- function(x) {
inherits(x, "peakPantheR_curveFit")
}
#' @title Curve fitting using minpack.lm
#'
#' @description Fit different curve models using \code{minpack}. Fitting
#' parameters can be passed or guessed.
#'
#' @param x (numeric) x values (e.g. retention time)
#' @param y (numeric) y observed values (e.g. spectra intensity)
#' @param curveModel (str) name of the curve model to fit (currently
#' \code{skewedGaussian} and \code{emgGaussian})
#' @param params (list or str) either 'guess' for automated parametrisation or
#' list of initial parameters (\code{$init_params}), lower parameter bounds
#' (\code{$lower_bounds}) and upper parameter bounds (\code{$upper_bounds})
#'
#' @return A 'peakPantheR_curveFit': a list of fitted curve parameters,
#' \code{fitStatus} from \code{nls.lm$info} and curve shape name
#' \code{curveModel}. \code{fitStatus=0} unsuccessful completion: improper input
#' parameters, \code{fitStatus=1} successful completion: first convergence test
#' is successful, \code{fitStatus=2} successful completion: second convergence
#' test is successful, \code{fitStatus=3} successful completion: both
#' convergence test are successful, \code{fitStatus=4} questionable completion:
#' third convergence test is successful but should be carefully examined
#' (maximizers and saddle points might satisfy), \code{fitStatus=5} unsuccessful
#' completion: excessive number of function evaluations/iterations
#'
#' @details
#' ## Examples cannot be computed as the function is not exported:
#' ## x is retention time, y corresponding intensity
#' input_x <- c(3362.102, 3363.667, 3365.232, 3366.797, 3368.362, 3369.927,
#' 3371.492, 3373.057, 3374.622, 3376.187, 3377.752, 3379.317,
#' 3380.882, 3382.447, 3384.012, 3385.577, 3387.142, 3388.707,
#' 3390.272, 3391.837, 3393.402, 3394.966, 3396.531, 3398.096,
#' 3399.661, 3401.226, 3402.791, 3404.356, 3405.921, 3407.486,
#' 3409.051)
#' input_y <- c(51048, 81568, 138288, 233920, 376448, 557288, 753216, 938048,
#' 1091840, 1196992, 1261056, 1308992, 1362752, 1406592, 1431360,
#' 1432896, 1407808, 1345344, 1268480, 1198592, 1126848, 1036544,
#' 937600, 849792, 771456, 692416, 614528, 546088, 492752,
#' 446464, 400632)
#'
#' ## Fit
#' fitted_curve <- fitCurve(input_x, input_y, curveModel='skewedGaussian',
#' params='guess')
#'
#' ## Returns the optimal fitting parameters
#' fitted_curve
#' #
#' # $amplitude
#' # [1] 275371.1
#' #
#' # $center
#' # [1] 3382.577
#' #
#' # $sigma
#' # [1] 0.07904697
#' #
#' # $gamma
#' # [1] 0.001147647
#' #
#' # $fitStatus
#' # [1] 2
#' #
#' # $curveModel
#' # [1] 'skewedGaussian'
#' #
#' # attr(,'class')
#' # [1] 'peakPantheR_curveFit'
fitCurve <- function(x, y, curveModel = "skewedGaussian", params = "guess") {
# Check inputs x and y length
if (length(x) != length(y)) {
stop("Error: length of \"x\" and \"y\" must match!") }
# known curveModel
known_curveModel <- c("skewedGaussian", "emgGaussian")
if (!(curveModel %in% known_curveModel)) {
stop(paste("Error: \"curveModel\" must be one of:",
paste(known_curveModel, collapse=', '))) }
# params
if (!(typeof(params) %in% c("list", "character"))) {
stop("Error: \"params\" must be a list or \"guess\"") }
useGuess <- TRUE
if (any(params != "guess")) {
useGuess <- FALSE
# check init_params, lower and upper bounds are defined
if (!all(c("init_params", "lower_bounds", "upper_bounds") %in%
names(params))) {
stop("Error: \"params must be a list of \"init_params\", ",
"\"lower_bounds\" and \"upper_bounds\"") }
# init_params is list
if (typeof(params$init_params) != "list") {
stop("Error: \"params$init_params\" must be a list of parameters")
}
# lower_bounds is list
if (typeof(params$lower_bounds) != "list") {
stop("Error: \"params$lower_bounds\" must be a list of parameters")
}
# upper_bounds is list
if (typeof(params$upper_bounds) != "list") {
stop("Error: \"params$upper_bounds\" must be a list of parameters")
}
}
# Init
fittedCurve <- list()
# Run fitting skewed gaussian
if (curveModel == "skewedGaussian") {
fittedCurve <- fitCurve_skewedGaussian(x, y, useGuess, params,
curveModel)
}
else if (curveModel == 'emgGaussian') {
fittedCurve <- fitCurve_emgGaussian(x, y, useGuess, params,
curveModel)
}
# for future curve shapes } else if () { }
return(fittedCurve)
}
# fit skewedGaussian
fitCurve_skewedGaussian <- function(x, y, useGuess, params, curveModel) {
fittedCurve <- list()
# Guess parameters and bounds
if (useGuess) {
new_params <- skewedGaussian_guess(x, y)
} else {
new_params <- params
}
# ensure order of init params and bounds (init is a list, lower and
# upper are ordered numeric vectors)
init <- list(amplitude = new_params$init_params$amplitude,
center = new_params$init_params$center,
sigma = new_params$init_params$sigma,
gamma = new_params$init_params$gamma)
lower <- unlist(c(new_params$lower_bounds["amplitude"],
new_params$lower_bounds["center"],
new_params$lower_bounds["sigma"],
new_params$lower_bounds["gamma"]))
upper <- unlist(c(new_params$upper_bounds["amplitude"],
new_params$upper_bounds["center"],
new_params$upper_bounds["sigma"],
new_params$upper_bounds["gamma"]))
# perform fit
resultFit <- minpack.lm::nls.lm(par = init,
lower = lower,
upper = upper,
fn = skewedGaussian_minpack.lm_objectiveFun,
observed = y, xx = x)
# prepare output
fittedCurve <- resultFit$par
fittedCurve$fitStatus <- resultFit$info
fittedCurve$curveModel <- curveModel
class(fittedCurve) <- "peakPantheR_curveFit"
return(fittedCurve)
}
# fit emgGaussian
fitCurve_emgGaussian <- function(x, y, useGuess, params, curveModel) {
fittedCurve <- list()
# Guess parameters and bounds
if (useGuess) {
new_params <- emgGaussian_guess(x, y)
} else {
new_params <- params
}
# ensure order of init params and bounds (init is a list, lower and
# upper are ordered numeric vectors)
init <- list(amplitude = new_params$init_params$amplitude,
center = new_params$init_params$center,
sigma = new_params$init_params$sigma,
gamma = new_params$init_params$gamma)
lower <- unlist(c(new_params$lower_bounds["amplitude"],
new_params$lower_bounds["center"],
new_params$lower_bounds["sigma"],
new_params$lower_bounds["gamma"]))
upper <- unlist(c(new_params$upper_bounds["amplitude"],
new_params$upper_bounds["center"],
new_params$upper_bounds["sigma"],
new_params$upper_bounds["gamma"]))
# perform fit
resultFit <- minpack.lm::nls.lm(par = init,
lower = lower,
upper = upper,
fn = emgGaussian_minpack.lm_objectiveFun,
observed = y, xx = x)
# prepare output
fittedCurve <- resultFit$par
fittedCurve$fitStatus <- resultFit$info
fittedCurve$curveModel <- curveModel
class(fittedCurve) <- "peakPantheR_curveFit"
return(fittedCurve)
}
#' @title Predict curve values
#'
#' @description Evaluate fitted curve values at \code{x} data points
#'
#' @param fittedCurve (peakPantheR_curveFit) A 'peakPantheR_curveFit': a list of
#' curve fitting parameters, curve shape model \code{curveModel} and nls.lm fit
#' status \code{fitStatus}.
#' @param x (numeric) values at which to evaluate the fitted curve
#'
#' @return fitted curve values at x
#'
#' @details
#' ## Examples cannot be computed as the function is not exported:
#' ## Input a fitted curve
#' fittedCurve <- list(amplitude=275371.1, center=3382.577, sigma=0.07904697,
#' gamma=0.001147647, fitStatus=2,
#' curveModel='skewedGaussian')
#' class(fittedCurve) <- 'peakPantheR_curveFit'
#' input_x <- c(3290, 3300, 3310, 3320, 3330, 3340, 3350, 3360, 3370, 3380,
#' 3390, 3400, 3410)
#'
#' ## Predict y at each input_x
#' pred_y <- predictCurve(fittedCurve, input_x)
#' pred_y
#' # [1] 2.347729e-08 1.282668e-05 3.475590e-03 4.676579e-01 3.129420e+01
#' # [6] 1.043341e+03 1.736915e+04 1.447754e+05 6.061808e+05 1.280037e+06
#' # [11] 1.369651e+06 7.467333e+05 2.087477e+05
predictCurve <- function(fittedCurve, x) {
# Check input
if (!is.peakPantheR_curveFit(fittedCurve)) {
stop("Error: \"fittedCurve\" must be a peakPantheR_curveFit!")
}
# known curveModel
known_curveModel <- c("skewedGaussian", "emgGaussian")
if (!(fittedCurve$curveModel %in% known_curveModel)) {
stop(paste("Error: \"curveModel\" must be one of:",
paste(known_curveModel, collapse=', ')))
}
# Select correct model
if (fittedCurve$curveModel == "skewedGaussian")
{
yy <- skewedGaussian_minpack.lm(params = fittedCurve, xx = x)
}
else if (fittedCurve$curveModel == 'emgGaussian') {
yy <- emgGaussian_minpack.lm(params = fittedCurve, xx = x)
}
# for future curve shapes
# else if () {}
return(yy)
}
## -----------------------------------------------------------------------------
## Skewed Gaussian
## -----------------------------------------------------------------------------
#' @title Gaussian Error function
#'
#' @description Implementation of the gaussian error function
#'
#' @param x (numeric) value at which to evaluate the gaussian error function
#'
#' @return Value of the gaussian error function evaluated at x
gaussian_erf <- function(x) {
return(2 * stats::pnorm(x * sqrt(2)) - 1)
}
#' @title Gaussian Error function
#'
#' @description Implementation of the gaussian error function
#'
#' @param x (numeric) value at which to evaluate the gaussian error function
#'
#' @return Value of the gaussian error function evaluated at x
gaussian_cerf <- function(x) {
return(1 - (2 * stats::pnorm(x * sqrt(2)) - 1))
}
#' @title Implementation of the Skewed Gaussian peak shape for use with
#' minpack.lm
#'
#' @description Implementation of the Skewed Gaussian peak shape for use with
#' minpack.lm
#'
#' @param params (list) skewed gaussian parameters (\code{params$gamma},
#' \code{params$center}, \code{params$sigma}, \code{params$amplitude})
#' @param xx (numeric) values at which to evalute the skewed gaussian
#'
#' @return value of the skewed gaussian evaluated at xx
skewedGaussian_minpack.lm <- function(params, xx) {
erf_term <- 1 + gaussian_erf((params$gamma * (xx-params$center))/
params$sigma * sqrt(2))
yy <- (params$amplitude/(params$sigma * sqrt(2 * pi))) *
exp(-(xx - params$center)^2/2 * params$sigma^2) * erf_term
return(yy)
}
#' @title Implementation of the Exponentially Modified Gaussian (EMG) peak
#' shape for use with minpack.lm
#'
#' @description Implementation of the Exponentially Modified Gaussian
#' (EMG) peak shape for use with minpack.lm
#'
#' @param params (list) exponentiall modified gaussian parameters
#' (\code{params$gamma}, \code{params$center}, \code{params$sigma},
#' \code{params$amplitude})
#' @param xx (numeric) values at which to evalute the exponentially
#' modified gaussian
#'
#' @return value of the exponentially modified gaussian evaluated at xx
emgGaussian_minpack.lm <- function(params, xx) {
cerf_term <- gaussian_cerf((params$center + params$gamma *
(params$sigma^2) - xx)/(params$sigma * sqrt(2)))
yy <- (params$amplitude*params$gamma/2) *
exp(params$gamma*(params$center - xx +
(params$gamma * (params$sigma^2)/2))) * cerf_term
return(yy)
}
#' @title Skewed Gaussian minpack.lm objective function
#'
#' @description Skewed Gaussian minpack.lm objective function, calculates
#' residuals using the skewed gaussian Peak Shape
#'
#' @param params (list) skewed gaussian parameters (\code{params$gamma},
#' \code{params$center}, \code{params$sigma}, \code{params$amplitude})
#' @param observed (numeric) observed y value at xx
#' @param xx (numeric) value at which to evalute the skewed gaussian
#'
#' @return difference between observed and expected skewed gaussian value
#' evaluated at xx
skewedGaussian_minpack.lm_objectiveFun <- function(params, observed, xx) {
return(observed - skewedGaussian_minpack.lm(params, xx))
}
#' @title Exponentially Modified Gaussian minpack.lm objective function
#'
#' @description Exponentially Modified Gaussian (EMG) minpack.lm objective
#' function, calculates residuals using the EMG Peak Shape
#'
#' @param params (list) exponentially modified gaussian parameters
#' (\code{params$gamma}, \code{params$center}, \code{params$sigma},
#' \code{params$amplitude})
#' @param observed (numeric) observed y value at xx
#' @param xx (numeric) value at which to evalute the exponentially
#' modified gaussian
#'
#' @return difference between observed and expected exponentially modified
#' gaussian value evaluated at xx
emgGaussian_minpack.lm_objectiveFun <- function(params, observed, xx) {
return(observed - emgGaussian_minpack.lm(params, xx))
}
#' @title Guess function for initial skewed gaussian parameters and bounds
#'
#' @description Guess function for initial skewed gaussian parameters and
#' bounds, at the moment only checks the x position
#'
#' @param x (numeric) x values (e.g. retention time)
#' @param y (numeric) y observed values (e.g. spectra intensity)
#'
#' @return A list of guessed starting parameters \code{list()$init_params},
#' lower \code{list()$lower_bounds} and upper bounds \code{list()$upper_bounds}
#' (\code{$gamma}, \code{$center}, \code{$sigma}, \code{$amplitude})
skewedGaussian_guess <- function(x, y) {
# set center as x position of max y value (e.g. highest spectra intensity)
center_guess <- x[which.max(y)]
# init_param
init_params <- list(amplitude=1e+07, center=center_guess, sigma=1, gamma=1)
# lower_bounds
lower_bounds <- list(amplitude=0, center=center_guess-3, sigma=0,gamma=-0.1)
# upper_bounds
upper_bounds <- list(amplitude=1e+09, center=center_guess+3, sigma=5,
gamma = 5)
return(list(init_params = init_params, lower_bounds = lower_bounds,
upper_bounds = upper_bounds))
}
#' @title Guess function for initial exponentially modified gaussian
#' parameters and bounds
#'
#' @description Guess function for initial exponentially modified gaussian
#' parameters and bounds, at the moment only checks the x position
#'
#' @param x (numeric) x values (e.g. retention time)
#' @param y (numeric) y observed values (e.g. spectra intensity)
#'
#' @return A list of guessed starting parameters \code{list()$init_params},
#' lower \code{list()$lower_bounds} and upper bounds \code{list()$upper_bounds}
#' (\code{$gamma}, \code{$center}, \code{$sigma}, \code{$amplitude})
emgGaussian_guess <- function(x, y) {
# set center as x position of max y value (e.g. highest spectra intensity)
center_guess <- x[which.max(y)]
# init_param
init_params <- list(amplitude=1e+07, center=center_guess, sigma=1, gamma=1)
# lower_bounds
lower_bounds <- list(amplitude=0, center=center_guess-3, sigma=0,gamma=-0.1)
# upper_bounds
upper_bounds <- list(amplitude=1e+09, center=center_guess+3, sigma=5,
gamma = 5)
return(list(init_params = init_params, lower_bounds = lower_bounds,
upper_bounds = upper_bounds))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.