Nothing
#' Generation Wrapper function for \code{-Omics*}-class objects
#'
#' @description This function calls the \code{\link{CreateOmicsPath}},
#' \code{\link{CreateOmicsSurv}}, \code{\link{CreateOmicsReg}}, and
#' \code{\link{CreateOmicsCateg}} functions to create valid objects of the
#' classes \code{OmicsPathway}, \code{OmicsSurv}, \code{OmicsReg}, or
#' \code{OmicsCateg}, respectively.
#'
#' @param assayData_df An \eqn{N \times p} data frame with named columns.
#' @param pathwayCollection_ls A \code{pathwayCollection} list of known gene
#' pathways with two or three elements:
#' \itemize{
#' \item{\code{pathways} : }{A named list of character vectors. Each vector
#' contains the names of the individual genes within that pathway as a
#' vector of character strings. The names contained in these vectors must
#' have non-empty overlap with the \emph{column names} of the
#' \code{assayData_df} data frame. The names of the pathways (the list
#' elements themselves) should be the a shorthand representation of the
#' full pathway name.}
#' \item{\code{TERMS}: }{ A character vector the same length as the
#' \code{pathways} list with the proper names of the pathways.}
#' \item{\code{description} : }{An optional character vector the same length
#' as the \code{pathways} list with additional information about the
#' pathways.}
#' }
#' If your gene pathways list is stored in a \code{.gmt} file, use the
#' \code{\link{read_gmt}} function to import your pathways list as a
#' \code{pathwayCollection} list object.
#' @param response An optional response object. See "Details" for more
#' information. Defaults to \code{NULL}.
#' @param respType What type of response has been supplied. Options are
#' \code{"none"}, \code{"survival"}, \code{"regression"}, and
#' \code{"categorical"}. Defaults to \code{"none"} to match the default
#' \code{response = NULL} value.
#' @param centerScale Should the values in \code{assayData_df} be centered and
#' scaled? Defaults to \code{TRUE} for centering and scaling, respectively.
#' See \code{\link{scale}} for more information.
#' @param minPathSize What is the smallest number of genes allowed in each
#' pathway? Defaults to 3.
#' @param ... Dots for additional arguments passed to the internal
#' \code{\link{CheckAssay}} function.
#'
#' @details This function is a wrapper around the four \code{CreateOmics*}
#' functions. The values supplied to the \code{response} function argument
#' can be in a list, data frame, matrix, vector, \code{\link[survival]{Surv}}
#' object, or any class which extends these. Because this function makes
#' "best guess" type conversions based on the \code{respType} argument, this
#' argument is mandatory if \code{response} is non-\code{NULL}. Further, it
#' is the responsibility of the user to ensure that the coerced response
#' contained in the resulting \code{Omics} object accurately reflects the
#' supplied response.
#'
#' For \code{respType = "survival"}, \code{response} is assumed to be ordered
#' by event time, then event indicator. For example, if the response is a
#' data frame or matrix, this function assumes that the first column is the
#' time and the second column the death indicator. If the response is a list,
#' then this function assumes that the first entry in the list is the event
#' time and the second entry the death indicator. The death indicator must
#' be a logical or binary (0-1) vector, where 1 or \code{TRUE} represents a
#' death and 0 or \code{FALSE} represents right-censoring.
#'
#' Some of the pathways in the supplied pathways list will be removed, or
#' "trimmed", during object creation. For the pathway-testing methods, these
#' trimmed pathways will have \eqn{p}-values given as \code{NA}. For an
#' explanation of pathway trimming, see the documentation for the
#' \code{\link{IntersectOmicsPwyCollct}} function.
#'
#' @return A valid object of class \code{OmicsPathway}, \code{OmicsSurv},
#' \code{OmicsReg}, or \code{OmicsCateg}.
#'
#' @include createClass_validOmics.R
#' @include createClass_OmicsPath.R
#' @include createClass_OmicsSurv.R
#' @include createClass_OmicsReg.R
#' @include createClass_OmicsCateg.R
#'
#' @seealso \code{\link[=OmicsPathway-class]{OmicsPathway}},
#' \code{\link{CreateOmicsPath}},
#' \code{\link[=OmicsSurv-class]{OmicsSurv}},
#' \code{\link{CreateOmicsSurv}},
#' \code{\link[=OmicsCateg-class]{OmicsCateg}},
#' \code{\link{CreateOmicsCateg}}
#' \code{\link[=OmicsReg-class]{OmicsReg}},
#' \code{\link{CreateOmicsReg}},
#' \code{\link{CheckAssay}},
#' \code{\link{CheckPwyColl}}, and
#' \code{\link{IntersectOmicsPwyCollct}}
#'
#' @importFrom survival is.Surv
#'
#' @examples
#' ### Load the Example Data ###
#' data("colonSurv_df")
#' data("colon_pathwayCollection")
#'
#' ### Create an OmicsPathway Object ###
#' colon_OmicsPath <- CreateOmics(
#' assayData_df = colonSurv_df[, -(2:3)],
#' pathwayCollection_ls = colon_pathwayCollection
#' )
#'
#' ### Create an OmicsSurv Object ###
#' colon_OmicsSurv <- CreateOmics(
#' assayData_df = colonSurv_df[, -(2:3)],
#' pathwayCollection_ls = colon_pathwayCollection,
#' response = colonSurv_df[, 1:3],
#' respType = "surv"
#' )
#'
#' ### Create an OmicsReg Object ###
#' colon_OmicsReg <- CreateOmics(
#' assayData_df = colonSurv_df[, -(2:3)],
#' pathwayCollection_ls = colon_pathwayCollection,
#' response = colonSurv_df[, 1:2],
#' respType = "reg"
#' )
#'
#' ### Create an OmicsCateg Object ###
#' colon_OmicsCateg <- CreateOmics(
#' assayData_df = colonSurv_df[, -(2:3)],
#' pathwayCollection_ls = colon_pathwayCollection,
#' response = colonSurv_df[, c(1,3)],
#' respType = "cat"
#' )
#'
#' @export
CreateOmics <- function(assayData_df,
pathwayCollection_ls,
response = NULL,
respType = c("none", "survival", "regression", "categorical"),
centerScale = c(TRUE, TRUE),
minPathSize = 3,
...){
# browser()
### Match and Check Response ###
respType <- match.arg(respType)
if(respType != "none" && is.null(response)){
stop(paste0("Response must be specified for type = ", respType))
}
if(respType == "none" && !is.null(response)){
stop("Response type required when a response is given.")
}
### Data Error Checks and Warnings ###
# Assay
origClass <- class(assayData_df)
assayData_df <- CheckAssay(assayData_df, ...)
assayData_df <- CheckSampleIDs(assayData_df)
# Pathway Collection
pathwayCollection_ls <- CheckPwyColl(pathwayCollection_ls)
# merge the pheno and assay data
if(!is.null(response)){
respClean_df <- .convertPhenoDF(response, type = respType)
respClean_df <- CheckSampleIDs(respClean_df)
data_ls <- JoinPhenoAssay(
pheno_df = respClean_df,
assay_df = assayData_df
)
assayData_df <- data_ls$assay
respClean_df <- data_ls$response
sampleID <- data_ls$sampleID
respClean <- .convertResponse(respClean_df, type = respType)
} else {
sampleID <- assayData_df[, 1, drop = TRUE]
assayData_df <- assayData_df[, -1]
}
### Centre and Scale Assay ###
if(any(centerScale)){
assayData_df <- as.data.frame(
scale(assayData_df, center = centerScale[1], scale = centerScale[2])
)
class(assayData_df) <- origClass
}
### Create Data Object ###
switch (respType,
none = {
message("\n ====== Creating object of class OmicsPathway ======")
out <- CreateOmicsPath(
assayData_df = assayData_df,
sampleIDs_char = sampleID,
pathwayCollection_ls = pathwayCollection_ls
)
},
survival = {
message("\n ====== Creating object of class OmicsSurv =======")
out <- CreateOmicsSurv(
assayData_df = assayData_df,
sampleIDs_char = sampleID,
pathwayCollection_ls = pathwayCollection_ls,
eventTime_num = respClean$time,
eventObserved_lgl = respClean$dead
)
},
regression = {
message("\n ====== Creating object of class OmicsReg =======")
out <- CreateOmicsReg(
assayData_df = assayData_df,
sampleIDs_char = sampleID,
pathwayCollection_ls = pathwayCollection_ls,
response_num = respClean
)
},
categorical = {
message("\n ====== Creating object of class OmicsCateg =======")
out <- CreateOmicsCateg(
assayData_df = assayData_df,
sampleIDs_char = sampleID,
pathwayCollection_ls = pathwayCollection_ls,
response_fact = respClean
)
}
)
### Return ###
IntersectOmicsPwyCollct(out, trim = minPathSize)
}
.convertResponse <- function(object,
type = c("survival", "regression", "categorical")){
type <- match.arg(type)
if(type == "survival"){
if(is.Surv(object)){
object <- as.matrix(object)
}
if(is.data.frame(object)){
object <- as.matrix(object)
}
if(is.matrix(object)){
if(ncol(object) == 2){
outTime <- object[, 1, drop = TRUE]
outDeath <- object[, 2, drop = TRUE]
} else {
stop("Object must have two columns only: death time and death indicator.")
}
} else if(is.list(object)){
if(length(object) == 2){
outTime <- object[[1]]
outDeath <- object[[2]]
} else {
stop("Object must have two entries only: death time and death indicator.")
}
}
if(is.atomic(outTime) && is.atomic(outDeath)){
outTime <- as.numeric(outTime)
outDeath <- as.logical(outDeath)
} else {
stop("Death time and death indicator must be atomic vectors.")
}
list(time = outTime,
dead = outDeath)
} else {
if(is.data.frame(object)){
object <- as.matrix(object)
}
if(is.matrix(object)){
if(ncol(object) == 1 || nrow(object) == 1){
object <- as.vector(object)
} else {
stop("Multivariate response not supported at this time.")
}
}
if(is.list(object)){
if(length(object) == 1){
object <- unlist(object, use.names = FALSE)
} else {
stop("Non-survival response must be a vector or 1-dimensional data frame.")
}
}
if(is.atomic(object)){
if(type == "regression"){
object <- as.numeric(object)
} else {
object <- as.factor(object)
}
} else {
stop("Non-survival response must be a vector or 1-dimensional data frame.")
}
object
}
}
.convertPhenoDF <- function(pheno_df,
type = c("survival", "regression", "categorical")){
type <- match.arg(type)
if(!inherits(pheno_df, "data.frame")){
stop("The response must be a data frame.")
}
if(type == "survival"){
if(ncol(pheno_df) != 3){
stop("Survival data must be a data frame with three columns, sample ID, event time,
and death indicator, in exactly that order.")
} else {
pheno_df[, 2] <- as.numeric(pheno_df[, 2, drop = TRUE])
pheno_df[, 3] <- as.logical(pheno_df[, 3, drop = TRUE])
}
} else {
if(ncol(pheno_df) != 2){
stop("Regression and categorical data must be a data frame with two columns, sample ID
and response, in exactly that order.")
} else {
if(type == "regression"){
pheno_df[, 2] <- as.numeric(pheno_df[, 2, drop = TRUE])
} else {
pheno_df[, 2] <- as.factor(pheno_df[, 2, drop = TRUE])
}
}
}
pheno_df
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.