Description Details Author(s) References See Also Examples
Algorithms to convert a gene expression array provided as an expression table to a 'pathway fingerprint'. The pathway fingerprint provides an unbiased, consistent annotation of expression data as a molecular phenotype, represented by activation status in 633 pathways. This is a vector of discrete ternary scores to represent high (1), low(-1) or insignificant (0) expression in a suite of pathways. Systematic definition of these functional relationships provides a tool for searching a pathway activation map of gene expression spanning species and technologies.
Package: | pathprint |
Type: | Package |
Version: | 2.0.0 |
Date: | 2018-04-15 |
License: | GPL |
Gabriel Altschuler, Sokratis Kariotis
Maintainer: Sokratis Kariotis s.kariotis@sheffield.ac.uk
Altschuler, G. M., O. Hofmann, I. Kalatskaya, R. Payne, S. J. Ho Sui, U. Saxena, A. V. Krivtsov, S. A. Armstrong, T. Cai, L. Stein and W. A. Hide (2013). "Pathprinting: An integrative approach to understand the functional basis of disease." Genome Med 5(7): 68.
exprs2fingerprint
, consensusFingerprint
,
consensusDistance
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 | require(pathprintGEOData)
# Use fingerprints to analyze the ALL dataset
require(ALL)
data(ALL)
annotation(ALL)
library(SummarizedExperiment)
# load the data use
data(SummarizedExperimentGEO)
ds = c("chipframe", "genesets","pathprint.Hs.gs",
"platform.thresholds","pluripotents.frame")
data(list = ds)
# extract part of the GEO.fingerprint.matrix and GEO.metadata.matrix
GEO.fingerprint.matrix = assays(geo_sum_data[,300000:350000])$fingerprint
GEO.metadata.matrix = colData(geo_sum_data[,300000:350000])
# free up space by removing the geo_sum_data object
remove(geo_sum_data)
# The chip used was the Affymetrix Human Genome U95 Version 2 Array
# The correspending GEO ID is GPL8300
# Extract portion of the expression matrix
ALL.exprs<-exprs(ALL)
ALL.exprs.sub<-ALL.exprs[,1:5]
# Process fingerprints
ALL.fingerprint<-exprs2fingerprint(exprs = ALL.exprs.sub,
platform = "GPL8300",
species = "human",
progressBar = TRUE
)
head(ALL.fingerprint)
####
# Construct consensus fingerprint based on pluripotent records
# Use this consensus to find similar arrays
# Extract common GSMs since we only loaded part of the geo_sum_data object
common_GSMs <- intersect(pluripotents.frame$GSM,colnames(GEO.fingerprint.matrix))
pluripotent.consensus<-consensusFingerprint(
GEO.fingerprint.matrix[,common_GSMs], threshold=0.9)
# calculate distance from the pluripotent consensus
geo.pluripotentDistance<-consensusDistance(
pluripotent.consensus, GEO.fingerprint.matrix)
# plot histograms
par(mfcol = c(2,1), mar = c(0, 4, 4, 2))
geo.pluripotentDistance.hist<-hist(geo.pluripotentDistance[,"distance"],
nclass = 50, xlim = c(0,1), main = "Distance from pluripotent consensus")
par(mar = c(7, 4, 4, 2))
hist(geo.pluripotentDistance[pluripotents.frame$GSM, "distance"],
breaks = geo.pluripotentDistance.hist$breaks, xlim = c(0,1),
main = "", xlab = "above: all GEO, below: pluripotent samples")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.