Nothing
newProgressBar <- function (min = 0, max = 1, initial = 0)
{
.val <- initial
.nb <- 0L
.pc <- -1L
width <- 70
up3 <- function(value) {
if (!is.finite(value) || value < min || value > max)
return()
.val <<- value
nb <- round(width * (value - min)/(max - min))
pc <- round(100 * (value - min)/(max - min))
if (nb == .nb && pc == .pc)
return()
cat(paste0("\r |", rep(" ", 1 * width + 6)))
cat(paste(c("\r |", rep.int("=", nb), rep.int(" ", 1 * (width - nb)), sprintf("| %3d%%", pc)), collapse = "") )
flush.console()
.nb <<- nb
.pc <<- pc
}
getVal <- function() .val
kill <- function() { cat("\n"); flush.console() }
structure(list(getVal = getVal, up = up3, kill=kill), class = "txtProgressBar")
}
som.training.phase <- function(indata, weightMatrix, metricSamples, epochs,
initLearnRate, inverseLearnRate, initRadius, progressbar )
{
cycleIntern <- 0
maxCycleIntern <- epochs * nrow(indata)
deltaMatrix <- matrix(0, nrow=nrow(weightMatrix), ncol=ncol(weightMatrix))
distanceVector <- rep(0, nrow(weightMatrix))
neighborhoodVector <- rep(0, nrow(weightMatrix))
somSize <- sqrt(nrow(weightMatrix))
any.na <- any(is.na(indata))
for (epoch.i in seq(epochs-1) )
{
t1 <- Sys.time()
for (it in seq(nrow(indata)) )
{
cycleIntern <- cycleIntern + 1
radius.t <- 1+(initRadius-1)*(maxCycleIntern-cycleIntern)/(maxCycleIntern)
learnRate.t <- initLearnRate * inverseLearnRate / (inverseLearnRate + cycleIntern)
calculateDelta( weightMatrix, indata[it,], any.na, deltaMatrix )
calculateEuclideanDistances( deltaMatrix[,metricSamples], distanceVector )
BMU <- which.min(distanceVector)
calculateNeighborhoodMatrix( BMU, somSize, radius.t, neighborhoodVector )
weightMatrix <- weightMatrix + learnRate.t * (deltaMatrix * neighborhoodVector)
}
if(!is.null(progressbar))
{
if( progressbar$getVal() == 0 )
{
past.runtime = as.double(difftime( Sys.time(),t1, units="secs"))
util.info("Remaining time for SOM training: ~", ceiling(11*past.runtime/60), "min = ~", round(11*past.runtime/3600,1),"h")
}
setTxtProgressBar( progressbar, progressbar$getVal()+1 )
}
}
# remember BMU in last epoch
BMU <- rep(NA,nrow(indata))
names(BMU) <- rownames(indata)
for (it in seq(nrow(indata)) )
{
cycleIntern <- cycleIntern + 1
radius.t <- 1+(initRadius-1)*(maxCycleIntern-cycleIntern)/(maxCycleIntern)
learnRate.t <- initLearnRate * inverseLearnRate / (inverseLearnRate + cycleIntern)
calculateDelta( weightMatrix, indata[it,], any.na, deltaMatrix )
calculateEuclideanDistances( deltaMatrix[,metricSamples], distanceVector )
BMU[it] <- which.min(distanceVector)
calculateNeighborhoodMatrix( BMU[it], somSize, radius.t, neighborhoodVector )
weightMatrix <- weightMatrix + learnRate.t * (deltaMatrix * neighborhoodVector)
}
if(!is.null(progressbar)) setTxtProgressBar( progressbar, progressbar$getVal()+1 )
return( list( weightMatrix=weightMatrix, BMU=BMU ) )
}
som.training <- function( indata, weightMatrix, metricSamples, prolongationFactor = 1, verbose = F )
{
if( missing(metricSamples) ) metricSamples <- seq( ncol(indata) )
if(verbose) { pb <-newProgressBar(min = 0, max = 12); cat("\r") } else pb <- NULL
somSize <- sqrt(nrow(weightMatrix))
som.result <- som.training.phase( indata, weightMatrix, metricSamples,
epochs=2*prolongationFactor,
initLearnRate=0.05,
inverseLearnRate=nrow(indata)*2*prolongationFactor/100,
initRadius=somSize, pb )
som.result <- som.training.phase( indata, som.result$weightMatrix, metricSamples,
epochs=10*prolongationFactor,
initLearnRate=0.02,
inverseLearnRate=nrow(indata)*10*prolongationFactor/100,
initRadius=min(3,somSize), pb )
node.summary <- data.frame(x = rep(1:somSize, somSize),
y = rep(1:somSize, each=somSize),
n.features = NA )
node.summary$n.features <- as.vector( table( som.result$BMU )[as.character(1:(somSize^2))] )
node.summary$n.features[ which(is.na(node.summary$n.features)) ] <- 0
if(verbose) pb$kill()
return( list(
"weightMatrix" = som.result$weightMatrix,
"node.summary" = node.summary,
"feature.BMU" = som.result$BMU
) )
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.