Nothing
pipeline.prepareIndata <- function()
{
indata.sample.mean <<- colMeans(indata)
if (preferences$sample.quantile.normalization)
{
indata <<- Quantile.Normalization(indata)
}
colnames(indata) <<- make.unique(colnames(indata))
names(group.labels) <<- make.unique(names(group.labels))
names(group.colors) <<- make.unique(names(group.colors))
indata.gene.mean <<- rowMeans(indata)
if (preferences$feature.centralization)
{
indata <<- indata - indata.gene.mean
}
}
pipeline.generateSOM <- function()
{
som.result <<- som.linear.init(indata,somSize=preferences$dim.1stLvlSom)
# Rotate/Flip First lvl SOMs
if (preferences$rotate.SOM.portraits > 0)
{
for (i in 1:preferences$rotate.SOM.portraits)
{
o <- matrix(c(1:(preferences$dim.1stLvlSom^2)), preferences$dim.1stLvlSom, preferences$dim.1stLvlSom, byrow=TRUE)
o <- o[rev(1:preferences$dim.1stLvlSom),]
som.result <<- som.result[as.vector(o),]
}
}
if (preferences$flip.SOM.portraits)
{
o <- matrix(c(1:(preferences$dim.1stLvlSom^2)), preferences$dim.1stLvlSom, preferences$dim.1stLvlSom, byrow=TRUE)
som.result <<- som.result[as.vector(o),]
}
som.result <<- som.training( indata, som.result, prolongationFactor = preferences$training.extension, verbose = TRUE )
metadata <<- som.result$weightMatrix
colnames(metadata) <<- colnames(indata)
som.result$weightMatrix <<- NULL
## set up SOM dependent variables
gene.info$coordinates <<- apply( som.result$node.summary[som.result$feature.BMU,c("x","y")], 1, paste, collapse=" x " )
names(gene.info$coordinates) <<- rownames(indata)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.