Nothing
context("Primer Design")
test_that("primer_filtering_constraints", {
# check that the filtering procedure excludes the correct primers
data(Ippolito)
constraints(settings)$primer_length <- c("min" = 18, "max" = 22)
constraints(settings)$gc_clamp <- c("min" = 1, "max" = 2)
constraints(settings)$gc_ratio <- c("min" = 0.4, "max" = 0.6)
constraints(settings)$no_runs <- c("min" = 0, "max" = 3)
constraints(settings)$no_repeats <- c("min" = 0, "max" = 3)
constraints(settings)$melting_temp_range <- c("min" = 55, "max" = 65)
constraints(settings)$melting_temp_diff <- c("min" = 0, "max" = 5)
constraints(settings)$primer_coverage <- c("min" = 1)
constraints(settings)$primer_specificity <- c("min" = 0.9, "max" = 1)
conOptions(settings)$allowed_mismatches <- 5
cvg_constraints(settings) <- list("annealing_DeltaG" = c("max" = -5))
# evaluate constraints first to have reference values
active.constraints <- c("primer_length", "gc_clamp", "gc_ratio",
"no_runs", "no_repeats",
"primer_coverage", "primer_specificity")
filter.result <- suppressWarnings(cascaded.filter.quick(primer.df, template.df, settings,
to.compute.constraints = active.constraints))
excluded.df <- filter.result$excluded
# filtered by primer length:
filter.reasons <- rep(NA, nrow(primer.df))
filter.reasons[1:2] <- "primer_length"
filter.reasons[3:7] <- "gc_clamp"
filter.reasons[8] <- "primer_specificity"
expect_equal(filter.reasons, excluded.df$Exclusion_Reason)
})
test_that("primer_degeneration", {
primers <- c("ctccaaggt", "ktccaaggt",
"ntccaaggt", "nktccaggt",
"nkwsccaggt", "nkw-svhdb")
degens <- c(1, 2, 4, 4 * 2, 4*2*2*2, 4*2*2*2*3*3*3*3)
score <- score_degen(strsplit(primers, split = ""), gap.char = "-")
expect_equal(score, degens)
})
test_that("primer_initialization_naive", {
data(Ippolito)
allowed.fw <- c(20,50)
allowed.rev <- c(10,40)
template.df <- assign_binding_regions(template.df, fw = allowed.fw, rev = allowed.rev)
# nb: position check may fail by accident if primer binds earlier/later in some sequence by chance than intended ..
# -> don't change selected templates!
template.df <- template.df[c(1, 3),]
# naive primer initialization fw
primer.lengths <- 18:20
primers <- create.initial.primer.set(template.df, primer.lengths,
mode.directionality = "fw", "test", allowed.region.definition = "within",
init.algo = "naive", 16, 1)
# ensure that all primers are unique
expect_equal(length(unique(primers)), length(primers))
# ensure that primer identifiers are unique
expect_equal(length(unique(names(primers))), length(names(primers)))
# check that primers match templates WITHIN the target region
for (i in seq_along(primers)) {
x <- primers[i]
hits <- regexpr(x, template.df$Sequence)
match.len <- attr(hits, "match.length")
hit.len.idx <- which(match.len != -1)
# require at least one hit per primer:
expect_gte(length(hit.len.idx), 1)
# check length of complementary region
expect_lte(max(match.len[hit.len.idx]), max(primer.lengths))
expect_gte(min(match.len[hit.len.idx]), min(primer.lengths))
# check whether primer binds in allowed region
binding.pos.s <- hits[hit.len.idx] # start of binding
binding.pos.e <- hits[hit.len.idx] + (match.len[hit.len.idx] - 1) # end of binding
expect_gte(min(binding.pos.s), allowed.fw[1])
expect_lte(max(binding.pos.e), allowed.fw[2])
}
# check for "any" positions
primers <- create.initial.primer.set(template.df, primer.lengths,
mode.directionality = "fw", "test", allowed.region.definition = "any",
init.algo = "naive", 16, 1)
min.pos.s <- 1000
max.pos.e <- -1
for (i in seq_along(primers)) {
x <- primers[i]
hits <- regexpr(x, template.df$Sequence)
match.len <- attr(hits, "match.length")
hit.len.idx <- which(match.len != -1)
# require at least one hit per primer:
expect_gte(length(hit.len.idx), 1)
# check length of complementary region
expect_lte(max(match.len[hit.len.idx]), max(primer.lengths))
expect_gte(min(match.len[hit.len.idx]), min(primer.lengths))
# check whether primer intersects with allowed region
binding.pos.s <- hits[hit.len.idx] # start of binding
binding.pos.e <- hits[hit.len.idx] + (match.len[hit.len.idx] - 1) # end of binding
expect_lte(max(binding.pos.s), allowed.fw[2]) # don't overextend
if (min(binding.pos.s) < min.pos.s) {
min.pos.s <- min(binding.pos.s)
}
if (max(binding.pos.e) > max.pos.e) {
max.pos.e <- max(binding.pos.e)
}
}
expect_lt(min.pos.s, allowed.fw[1]) # there should be at least one primer binding earlier
expect_gt(max.pos.e, allowed.fw[2]) # there should be at least one primer binding later
# naive rev
primers <- create.initial.primer.set(template.df, primer.lengths,
mode.directionality = "rev", "test", allowed.region.definition = "within",
init.algo = "naive", 16, 1)
for (i in seq_along(primers)) {
x <- primers[i]
hits <- regexpr(x, rev.comp.sequence(template.df$Sequence))
match.len <- attr(hits, "match.length")
hit.len.idx <- which(match.len != -1)
# require at least one hit per primer:
expect_gte(length(hit.len.idx), 1)
# check length of complementary region
expect_lte(max(match.len[hit.len.idx]), max(primer.lengths))
expect_gte(min(match.len[hit.len.idx]), min(primer.lengths))
# check whether primer binds in allowed region
binding.pos.s <- hits[hit.len.idx] # start of binding
binding.pos.e <- hits[hit.len.idx] + (match.len[hit.len.idx] - 1) # end of binding
expect_gte(min(binding.pos.s), allowed.rev[1])
expect_lte(max(binding.pos.e), allowed.rev[2])
}
# check for MAFFT:
if (!check.tool.function()["MAFFT"]) {
# cannot test without OligoArrayAux
skip("MAFFT not available.")
}
# test tree primer creation
primer.lengths <- 30
data(Ippolito)
template.df <- assign_binding_regions(template.df, fw = allowed.fw, rev = allowed.rev)
max.degen <- 1
idx <- 50:52
})
test_that("full_design_function", {
skip_on_bioc() # design tests require a long time even for small sets
data(Ippolito)
template.df <- template.df[1:5,]
constraints(settings)$primer_length[2] <- 18
# test design without melting temp range but with melting temp diff:
constraints(settings) <- constraints(settings)[names(constraints(settings)) != "melting_temp_range"]
optimal.primers.greedy <- design_primers(template.df, "both", settings)
# check that melting temp diff and coverage of the optimal set are ok
opti.set <- optimal.primers.greedy$opti
cvg.ratio <- as.numeric(get_cvg_ratio(opti.set, template.df))
expect_equal(cvg.ratio, 1.0) # 100% cvg?
# check Tm diff, should be small ...
expect_lt(max(opti.set$melting_temp_diff), 5)
# test without any melting temp
constraints(settings) <- constraints(settings)[names(constraints(settings)) != "melting_temp_diff"]
optimal.primers.greedy <- design_primers(template.df, "both", settings)
# coverage ok?
opti.set <- optimal.primers.greedy$opti
cvg.ratio <- as.numeric(get_cvg_ratio(opti.set, template.df))
expect_equal(cvg.ratio, 1.0) # 100% cvg?
# only one result?
expect_equal(length(optimal.primers.greedy$all_results), 1)
# design with no constraints
constraints(settings) <- list()
optimal.primers.greedy <- try(design_primers(template.df, "both", settings), silent = TRUE)
# shouldn't be possible to design without any constraints
expect_that(class(optimal.primers.greedy), equals("try-error"))
# but it should be possible with just primer length & coverage
constraints(settings) <- list("primer_coverage" = c("min" = 1),
"primer_length" = c("min" = 18, "max" = 18))
optimal.primers.greedy <- design_primers(template.df, "both", settings)
expect_equal(length(optimal.primers.greedy$all_results), 1.0)
opti.set <- optimal.primers.greedy$opti
cvg.ratio <- as.numeric(get_cvg_ratio(opti.set, template.df))
expect_equal(cvg.ratio, 1.0) # 100% cvg?
# test for ILP: use required.cvg arg
data(Ippolito)
template.df <- template.df[1:5,]
# ramp up the constraints a bit to ensure we don't get a too high cvg
constraints(settings)$no_runs <- c("min" = 2, "max" = 2)
constraints(settings)$no_repeats <- c("min" = 2, "max" = 2)
constraints(settings)$gc_clamp <- c("min" = 1, "max" = 1)
# test with ILP
optimal.primers.ILP <- design_primers(template.df, "both", settings,
required.cvg = 0.2, opti.algo = "ILP")
opti.set <- optimal.primers.ILP$opti
expect_gte(as.numeric(get_cvg_ratio(opti.set, template.df)), 0.2)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.