Nothing
basicMedianPolishBO <- function(psToSumm, inObj, outObj, probes,
probesets){
## this runs on the node
stopifnot(!missing(probes), !missing(probesets))
ok <- is.character(probes) && is.character(probesets)
if (!ok) stop("Ensure inObj and outObj have valid rownames.")
rm(ok)
if (length(psToSumm) > 0){
open(inObj)
open(outObj)
psList <- splitIndicesByLength(psToSumm, ocProbesets())
for (pss in psList){
iIn <- unlist(pss)
inMatrix <- inObj[iIn,, drop=FALSE]
tmp <- basicRMA(inMatrix, pnVec=probes[iIn], normalize=FALSE,
background=FALSE, verbose=FALSE, destructive=TRUE)
rm(inMatrix, iIn)
iOut <- match(rownames(tmp), probesets)
outObj[iOut,] <- tmp
rm(tmp, iOut)
}
close(inObj)
close(outObj)
rm(inObj, outObj, psList)
gc()
}
TRUE
}
basicRMAbo <- function(pmMat, pnVec, normalize=TRUE, background=TRUE,
bgversion=2, destructive=FALSE, verbose=TRUE,
...){
dnms <- dimnames(pmMat)
dimnames(pmMat) <- NULL
## background correct
if (background){
if (verbose) message("Background correcting... ", appendLF=FALSE)
samplesByNode <- splitIndicesByNode(1:ncol(pmMat))
ocLapply(samplesByNode, rmaBgCorrectLDSnode, object=pmMat,
neededPkgs="oligo")
if (verbose) message("OK")
}
## normalize
if (normalize){
if (verbose) message("Normalizing... ", appendLF=FALSE)
if (!exists("samplesByNode"))
samplesByNode <- splitIndicesByNode(1:ncol(pmMat))
stats <- ocLapply(samplesByNode, qnTargetStatsLDSnode, object=pmMat, neededPkgs="oligo")
totalN <- sum(sapply(stats, "[[", "n"))
total <- rowSums(sapply(stats, "[[", "total"))
target <- total/totalN
rm(stats, total, totalN)
ocLapply(samplesByNode, qnToTargetLDSnode, target=target, object=pmMat, neededPkgs="oligo")
rm(samplesByNode, target)
if (verbose) message("OK")
}
## summarize
if (verbose) message("Summarizing... ", appendLF=FALSE)
rowsByProbesets <- split(1:nrow(pmMat), pnVec)
pnsListByNode <- splitIndicesByNode(rowsByProbesets)
pns <- names(rowsByProbesets)
rmaResult <- createFF("rma-", dim=c(length(pns), ncol(pmMat)))
ocLapply(pnsListByNode, basicMedianPolishBO, probes=pnVec,
probesets=pns, inObj=pmMat, outObj=rmaResult,
neededPkgs="oligo")
dimnames(pmMat) <- dnms
rm(dnms)
dimnames(rmaResult) <- list(pns, colnames(pmMat))
rm(pns)
if (verbose) message("OK")
return(rmaResult)
}
setMethod("summarize", "matrix",
function(object, probes=rownames(object), method='medianpolish', verbose=TRUE){
stopifnot(nrow(object) == length(probes))
method <- match.arg(method, summarizationMethods())
if (method == "medianpolish"){
return(basicRMA(object, pnVec=probes, normalize=FALSE,
background=FALSE, verbose=verbose))
} else {
## all PLM methods plm / plmr / plmrr / plmrc
## note that the summaries will be computed on log2(object)
return(basicPLM(object, pnVec=probes, normalize=FALSE,
background=FALSE, method=method, verbose=verbose))
}
})
## add PLM to ff_matrix
setMethod("summarize", "ff_matrix",
function(object, probes=rownames(object), method="medianpolish", verbose=TRUE){
stopifnot(nrow(object) == length(probes))
method <- match.arg(method, "medianpolish")
if (verbose) message("Summarizing... ", appendLF=FALSE)
if (method == "medianpolish"){
probeRowByProbesets <- split(1:nrow(object), probes)
pnsListByNode <- splitIndicesByNode(probeRowByProbesets)
pns <- names(probeRowByProbesets)
out <- createFF("oligo-mp-", dim=c(length(pns), ncol(object)))
dnmsIn <- dimnames(object)
dimnames(object) <- NULL
ocLapply(pnsListByNode, basicMedianPolishBO,
probes=probes, probesets=pns, inObj=object,
outObj=out, neededPkgs="oligo")
dimnames(object) <- dnmsIn
dimnames(out) <- list(names(probeRowByProbesets),
colnames(object))
}
if (verbose) message("OK")
return(out)
})
basicRMA <- function(pmMat, pnVec, normalize=TRUE, background=TRUE,
bgversion=2, destructive=FALSE, verbose=TRUE, ...){
pns <- unique(pnVec)
nPn <- length(unique(pnVec))
pnVec <- split(0:(length(pnVec)-1), pnVec)
if (destructive){
theExprs <- .Call("rma_c_complete", pmMat, pnVec, nPn, normalize,
background, bgversion, verbose, PACKAGE="oligo")
}else{
theExprs <- .Call("rma_c_complete_copy", pmMat, pnVec, nPn,
normalize, background, bgversion,
verbose, PACKAGE="oligo")
}
colnames(theExprs) <- colnames(pmMat)
return(theExprs)
}
## PLM base
plm1Probeset <- function(i, M, funPLM, nc=ncol(M)){
res <- funPLM(M[i,,drop=FALSE])
list(Estimates=res[['Estimates']][1:nc],
StdErrors=res[['StdErrors']][1:nc],
Residuals=res[['Residuals']])
}
runPLM <- function(PM, pnVec, funPLM){
groups <- split(1:nrow(PM), pnVec)
summaries <- lapply(groups, plm1Probeset, M=PM, funPLM=funPLM, nc=ncol(PM))
estimates <- do.call(rbind, lapply(summaries, '[[', 'Estimates'))
stderrors <- do.call(rbind, lapply(summaries, '[[', 'StdErrors'))
residuals <- matrix(NA, nrow=nrow(PM), ncol=ncol(PM))
residuals[unlist(groups, use.names=FALSE),] <- do.call(rbind, lapply(summaries, '[[', 'Residuals'))
rm(summaries)
colnames(estimates) <- colnames(stderrors) <- colnames(residuals) <- colnames(PM)
rownames(residuals) <- NULL
list(Estimates=estimates, StdErrors=stderrors, Residuals=residuals)
}
basicPLM <- function(pmMat, pnVec, normalize=TRUE, background=TRUE,
transfo=log2, method=c('plm', 'plmr', 'plmrr', 'plmrc'),
verbose=TRUE){
method <- match.arg(method)
funPLM <- switch(method,
plm=rcModelPLM,
plmr=rcModelPLMr,
plmrr=rcModelPLMrr,
plmrc=rcModelPLMrc)
if (background)
pmMat <- backgroundCorrect(pmMat)
if (normalize)
pmMat <- normalize(pmMat)
theClass <- class(pmMat)
if (verbose) message('Summarizing... ', appendLF=FALSE)
if ('matrix' %in% theClass){
res <- runPLM(transfo(pmMat), pnVec, funPLM)
if (verbose) message('OK')
return(res)
}else if('ff_matrix' %in% theClass){
estimates <- createFF(paste("oligo-", method, "-Estimates-", sep=""),
dim=c(length(unique(pnVec)), ncol(pmMat)))
stderrors <- createFF(paste("oligo-", method, "-StdErrors-", sep=""),
dim=c(length(unique(pnVec)), ncol(pmMat)))
residuals <- createFF(paste("oligo-", method, "-Residuals-", sep=""),
dim=dim(pmMat))
psets <- sort(unique(pnVec))
ocLapply(splitIndicesByNode(psets),
function(psets2proc, inMat, estimates, stderrors, residuals,
transfo, fun, pnVec, psetsOut){
if (length(psets2proc) > 0){
open(inMat)
open(estimates)
open(stderrors)
open(residuals)
## batches of probesets to process - vector of names
batches <- splitIndicesByLength(psets2proc, ocProbesets())
for (i in 1:length(batches)){
psBatch <- batches[[i]]
idx <- which(pnVec %in% psBatch)
rowPsSumm <- match(sort(unique(psBatch)), psetsOut)
tmp <- runPLM(transfo(inMat[idx,,drop=F]), pnVec[idx], fun)
estimates[rowPsSumm,] <- tmp[['Estimates']]
stderrors[rowPsSumm,] <- tmp[['StdErrors']]
residuals[idx,] <- tmp[['Residuals']]
rm(tmp)
}
close(inMat)
close(estimates)
close(stderrors)
close(residuals)
}
NULL
},
pmMat, estimates, stderrors,
residuals, transfo, funPLM,
pnVec, psets, neededPkgs="oligo")
rownames(estimates) <- rownames(stderrors) <- psets
rownames(residuals) <- rownames(pmMat)
}
if (verbose) message('OK')
colnames(estimates) <- colnames(stderrors) <- colnames(residuals) <- colnames(pmMat)
list(Estimates=estimates, StdErrors=stderrors, Residuals=residuals)
}
## summarizationMethods <- function()
## c('medianpolish', 'plm', 'plmr', 'plmrr', 'plmrc',
## 'wplm', 'wplmr', 'wplmrr', 'wplmrc')
summarizationMethods <- function()
c('medianpolish', 'plm')
###########
###########
## Y: nr x nc - nr: number of *probes* in probeset; nc: number of samples
## rcModelPLM/rcModelWPLM (supported)
## - Estimates: nc + nr
## - Weights..: nr x nc
## - Residuals: nr x nc
## - StdErrors: nc + nr
## - Scale....: 1
## rcModelMedianPolish (supported)
## - Estimates: nc + nr
## - Weights..: NULL
## - Residuals: nr x nc
## - StdErrors: NULL
## - Scale....: NULL
## rcModelPLMr/rcModelPLMrr/rcModelPLMrc (supported)
## - Estimates: nc + nr
## - Weights..: nr x nc
## - Residuals: nr x nc
## - StdErrors: nc + nr
## - Scale....: NULL
## rcModelPLM/rcModelWPLM (input.scale given) (supported)
## - Estimates: nc + nr
## - Weights..: nr x nc
## - Residuals: nr x nc
## - StdErrors: nc + nr
## - Scale....: 1
## rcModelPLM/rcModelWPLM (row.effects given)
## - Estimates: 00 + nc
## - Weights..: nr x nc
## - Residuals: nr x nc
## - StdErrors: 00 + nc
## - Scale....: nc
## rcModelPLM/rcModelWPLM (row.effects+input.scale given)
## - Estimates: 00 + nc
## - Weights..: nr x nc
## - Residuals: nr x nc
## - StdErrors: 00 + nc
## - Scale....: nc
## The other rcModel* functions return a scale parameter
## This equalizes output:
## - Estimates (chip and probe)
## - Weights
## - Residuals
## - StdErrors (chip and probe)
## - Scale
getFromListAsVector <- function(lst, elem, idx){
lapply(lst, function(x, idx) x[[elem]][idx], idx)
}
outputEqualizer <- function(lst, sampleNames=NULL, verbose=TRUE){
idx <- 1:ncol(lst[[1]]$Residuals)
if (verbose) txtMsg('Extracting...', appendLF=TRUE)
if (verbose) txtMsg(' Estimates... ')
theChipCoefs <- do.call(rbind, getFromListAsVector(lst, 'Estimates', idx))
colnames(theChipCoefs) <- sampleNames
theProbeCoefs <- unlist(getFromListAsVector(lst, 'Estimates', -idx))
if (verbose) msgOK()
if (verbose) txtMsg(' StdErrors... ')
theChipSE <- do.call(rbind, getFromListAsVector(lst, 'StdErrors', idx))
if (!is.null(theChipSE))
colnames(theChipSE) <- sampleNames
theProbeSE <- unlist(getFromListAsVector(lst, 'StdErrors', -idx))
if (verbose) msgOK()
if (verbose) txtMsg(' Weights..... ')
theWeights <- do.call(rbind, lapply(lst, '[[', 'Weights'))
if (!is.null(theWeights))
colnames(theWeights) <- sampleNames
if (verbose) msgOK()
if (verbose) txtMsg(' Residuals... ')
theResiduals <- do.call(rbind, lapply(lst, '[[', 'Residuals'))
colnames(theResiduals) <- sampleNames
if (verbose) msgOK()
if (verbose) txtMsg(' Scale....... ')
theScales <- unlist(lapply(lst, '[[', 'Scale'))
if (verbose) msgOK()
list(chipEffects=theChipCoefs, probeEffects=theProbeCoefs,
Weights=theWeights, Residuals=theResiduals,
chipStdErrors=theChipSE, probesStdErrors=theProbeSE,
Scale=theScales)
}
runSummarize <- function(mat, pnVec, transfo=log2,
method=summarizationMethods(),
verbose=TRUE){
if (verbose) message('Summarizing... ', appendLF=FALSE)
stopifnot(length(pnVec) == nrow(mat),
is.character(pnVec),
is.function(transfo))
method <- match.arg(method)
theFun <- switch(method,
medianpolish=subrcModelMedianPolish,
plm=subrcModelPLM)
## out <- foreach(submat=iExprsProbesets(mat, chunkSize=ocProbesets()), .packages='preprocessCore') %dopar% {
## theFun(y=transfo(submat), rownames(submat))
## }
## out <- unlist(out, recursive=FALSE)
out <- theFun(y=transfo(mat), pnVec)
if (verbose) message('OK')
outputEqualizer(out, colnames(mat), verbose=verbose)
}
fitProbeLevelModel <- function(object, background=TRUE, normalize=TRUE, target='core', method='plm', verbose=TRUE, S4=TRUE, ...){
## essential to be sorted by man_fsetid, so weights/residuals can be
## matched to original FS object
vars <- all.vars(substitute(list(...)))
vars <- unique(c('fid', 'fsetid', vars))
probeInfo <- getProbeInfo(object, target=target, field=vars,
sortBy='man_fsetid', ...)
probeInfo$man_fsetid <- as.character(probeInfo$man_fsetid)
tmpMat <- exprs(object)[probeInfo$fid,,drop=FALSE]
if (background)
tmpMat <- backgroundCorrect(tmpMat, method='rma', verbose=verbose)
if (normalize)
tmpMat <- normalize(tmpMat, method='quantile', verbose=verbose)
## rownames below is really important for parallelization
dimnames(tmpMat) <- list(probeInfo$man_fsetid, sampleNames(object))
fit <- runSummarize(tmpMat, probeInfo$man_fsetid, method=method, verbose=verbose)
rm(tmpMat)
Weights <- array(NA_integer_, dim(object))
if (method == 'plm')
Weights[probeInfo$fid,] <- fit$Weights
fit$Weights <- Weights
rm(Weights)
Residuals <- array(NA_integer_, dim(object))
Residuals[probeInfo$fid,] <- fit$Residuals
fit$Residuals <- Residuals
rm(Residuals)
if (method == 'medianpolish'){
fit$chipStdErrors <- array(NA_integer_, dim(chipEffects))
fit$probesStdErrors <- rep(NA_integer_, length(probeEffects))
fit$Scale <- rep(NA_integer_, nrow(chipEffects))
}
if (FALSE){
chipEffects <- fit$chipEffects
probeEffects <- fit$probeEffects
Weights <- Residuals <- array(NA_integer_, dim(object))
if (method == 'plm')
Weights[probeInfo$fid,] <- fit$Weights
Residuals[probeInfo$fid,] <- fit$Residuals
if (method == 'plm'){
chipStdErrors <- fit$chipStdErrors
probesStdErrors <- fit$probesStdErrors
Scale <- fit$Scale
}else{
chipStdErrors <- array(NA_integer_, dim(chipEffects))
probesStdErrors <- rep(NA_integer_, length(probeEffects))
Scale <- rep(NA_integer_, nrow(chipEffects))
}
rm(fit)
gc()
## fix residuals/weights to have the array dims
out <- list(Class='oligoPLM',
chip.coefs=chipEffects,
probe.coefs=probeEffects,
weights=Weights,
residuals=Residuals,
se.chip.coefs=chipStdErrors,
se.probe.coefs=probesStdErrors,
residualSE=Scale,
geometry=geometry(object),
method=method,
manufacturer=manufacturer(object),
annotation=annotation(object),
phenoData=phenoData(object), #added Guido
description=description(object), #added Guido
protocolData=protocolData(object), #added Guido
narrays=ncol(chipEffects),
nprobes=nrow(probeInfo),
nprobesets=nrow(chipEffects))
rm(chipEffects, probeEffects, Weights, Residuals, chipStdErrors,
probesStdErrors, Scale)
gc()
}
theSlots <- c('chip.coefs', 'probe.coefs', 'weights', 'residuals',
'se.chip.coefs', 'se.probe.coefs', 'residualSE')
myNames <- c('chipEffects', 'probeEffects', 'Weights', 'Residuals',
'chipStdErrors', 'probesStdErrors', 'Scale')
names(fit) <- theSlots[match(names(fit), myNames)]
fit$Class <- 'oligoPLM'
fit$geometry <- geometry(object)
fit$method <- method
fit$manufacturer <- manufacturer(object)
fit$annotation <- annotation(object)
fit$phenoData <- phenoData(object) #added Guido
fit$description <- description(object) #added Guido
fit$protocolData <- protocolData(object) # added Guido
fit$narrays <- ncol(fit$chip.coefs)
fit$nprobes <- nrow(probeInfo)
fit$nprobesets <- nrow(fit$chip.coefs)
if (FALSE){
if (S4)
out <- do.call(new, out)
out
}
if (S4)
return(do.call(new, fit))
fit
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.