R/dataset.subsample.R

Defines functions .addnoise datasource.subsample

Documented in datasource.subsample

datasource.subsample <- function(datasource,experiments=NA,datasets.num=5,
                                 local.noise=20,global.noise=0,
                                 noiseType="normal",samplevar=TRUE,seed=NULL)
{
    if(!is.null(seed)){
        set.seed(seed)
    }
    #sampledata
    s <- dim(datasource) # obs x variables
    if(is.na(experiments)){
        experiments <- s[1]/datasets.num
    }else{
        if (experiments>s[1]){
            experiments <- s[1]
            datasets.num=1
            warning("number of experiments is to big, 
                only one replicate will be generated")
        }
    }
    data.list <- vector('list',datasets.num)
    if(samplevar){
        smps <- round(runif(datasets.num,round(experiments*0.8),
                            round(experiments*1.2)))
    }else{
        smps <- rep(experiments,datasets.num)
    }
    if(sum(smps)>s[1]){
        idxs <- double()
        for(n in seq_len(datasets.num)){
            idxs <- c(idxs,sample(s[1],smps[n],replace = FALSE))
        }  
    }else{
        idxs <- sample(s[1],sum(smps),replace = FALSE) 
    }
    if(length(noiseType)==1){
        noiseType <- rep(noiseType,2)
    }
    for(n in seq_len(datasets.num)){
        idx <- idxs[1:smps[n]]
        idxs <- idxs[-(1:smps[n])]
        rdata <- datasource[idx,]
        sds <- apply(rdata, 2, sd)
        if(length(local.noise)==1){
            if (local.noise!=0){
                noise.l <- runif(1,local.noise*0.8,local.noise*1.2)
                rdata <- apply(rdata,2,.addnoise,noise=noise.l,
                               noiseType=noiseType[1])
            }
        }else{
            noise.l <- runif(1,local.noise[1],local.noise[2])
            rdata <- apply(rdata,2,.addnoise,noise=noise.l,
                           noiseType=noiseType[1])
        }
        if(length(global.noise)==1){
            if (global.noise!=0){
                noise.l <- runif(1,global.noise*0.8,global.noise*1.2)
                if(noiseType[2]=="normal"){
                    Gnoise <- matrix(rnorm(dim(rdata)[1]*s[2],mean=0,
                                           sd=mean(sds)*noise.l/100), 
                                     dim(rdata)[1], s[2])
                }
                if(noiseType[2]=="lognormal"){
                    Gnoise <- matrix(rlnorm(dim(rdata)[1]*s[2],meanlog=0,
                                            sdlog=mean(sds)*noise.l/100), 
                                     dim(rdata)[1], s[2])
                }
                rdata <- rdata+Gnoise
            }
        }else{
            noise.l <- runif(1,global.noise[1],global.noise[2])
            if(noiseType[2]=="normal"){
                Gnoise <- matrix(rnorm(dim(rdata)[1]*s[2],mean=0,
                                       sd=mean(sds)*noise.l/100), 
                                 dim(rdata)[1], s[2])
            }
            if(noiseType[2]=="lognormal"){
                Gnoise <- matrix(rlnorm(dim(rdata)[1]*s[2],meanlog=0,
                                        sdlog=mean(sds)*noise.l/100), 
                                 dim(rdata)[1], s[2])
            }
            rdata <- rdata+Gnoise
        }
        data.list[[n]] <- rdata
    }
    return(data.list) 
}

.addnoise <- function(x,noise=0,noiseType="normal"){
    if(sd(x)!=0){
        s.d <- runif(1,noise*0.8,noise*1.2)*sd(x)/100
    }else{
        #Even though the standard deviation of the variable is zero 
        #we add some noise
        s.d <- runif(1,0.01,0.15)
    }
    if(noiseType=="normal"){
        n <- rnorm(length(x),mean=0,sd=s.d)
    }
    if(noiseType=="lognormal"){
        n <- rlnorm(length(x), meanlog = 0, sdlog = s.d)
    }
    return(x+n)
}

Try the netbenchmark package in your browser

Any scripts or data that you put into this service are public.

netbenchmark documentation built on April 28, 2020, 7 p.m.