Nothing
# netReg: graph-regularized linear regression models.
#
# Copyright (C) 2015 - 2020 Simon Dirmeier
#
# This file is part of netReg.
#
# netReg is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# netReg is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with netReg. If not, see <http://www.gnu.org/licenses/>.
context("edgenet inference")
set.seed(42)
n <- 100
p <- 10
q <- 1
G.X <- matrix(rbeta(p * p, 1, 1), p, p)
G.X <- t(G.X) + G.X
G.Y <- matrix(rbeta(q * q, 1, 1), q, q)
G.Y <- t(G.Y) + G.Y
diag(G.X) <- diag(G.Y) <- 0
X <- matrix(rnorm(n * p, 0, 0.1), n, p)
B <- rnorm(p, 0, .1)
test_that("binomial dry run", {
eta <- 1 / (1 + base::exp(-X %*% B))
Y <- rbinom(n, 1, eta)
try({
fit.nr <- edgenet(X, Y,
lambda = 1, psigx = 0, psigy = 0,
family = binomial(), maxit = 1
)
})
})
test_that("predict throws at NULL", {
Y <- X %*% B + matrix(rnorm(n * q), n)
e <- edgenet(X, Y, lambda = 1, maxit = 1, thresh = 1e-5)
testthat::expect_error(predict(e, NULL))
})
test_that("predict throws at wrong newdata dimension", {
Y <- X %*% B + matrix(rnorm(n * q), n)
e <- edgenet(X, Y, lambda = 1, maxit = 1, thresh = 1e-5)
testthat::expect_error(predict(e, matrix(1, 25)))
})
test_that("gaussian without regularization reproduces stats::glm", {
Y <- X %*% B + rnorm(n * q, 0, 0.1)
fit.glm <- glm(Y ~ X, family = stats::gaussian)
fit.nr <- edgenet(X, Y, lambda = 0, psigx = 0, psigy = 0, family = "gaussian")
coef.glm <- unname(coef(fit.glm))
coef.nr <- unname(coef(fit.nr)[, "y[1]"])
testthat::expect_equal(coef.glm, coef.nr, tolerance = 0.1)
testthat::expect_visible(predict(fit.nr, X))
})
test_that("binomial without regularization reproduces stats::glm", {
eta <- 1 / (1 + base::exp(-X %*% B))
Y <- rbinom(n, 1, eta)
for (link in c("logit", "probit")) {
fit.glm <- glm(Y ~ X, family = stats::binomial(link))
fit.nr <- edgenet(X, Y, lambda = 0, psigx = 0, psigy = 0, family = binomial(link))
coef.glm <- unname(coef(fit.glm))
coef.nr <- unname(coef(fit.nr)[, "y[1]"])
testthat::expect_equal(coef.glm, coef.nr, tolerance = 0.1)
testthat::expect_visible(predict(fit.nr, X))
}
})
test_that("poisson without regularization reproduces stats::glm", {
eta <- base::exp(-X %*% B)
Y <- rpois(n, eta)
fit.glm <- glm(Y ~ X, family = stats::poisson)
fit.nr <- edgenet(X, Y, lambda = 0, psigx = 0, psigy = 0, family = poisson)
coef.glm <- unname(coef(fit.glm))
coef.nr <- unname(coef(fit.nr)[, "y[1]"])
testthat::expect_equal(coef.glm, coef.nr, tolerance = 0.1)
testthat::expect_visible(predict(fit.nr, X))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.