Description Usage Arguments Value Examples
Finds the optimal regulariztion parameters using cross-validation for edgenet. We use the BOBYQA algorithm to find the optimial regularization parameters in a cross-validation framework.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 | cv.edgenet(
X,
Y,
G.X = NULL,
G.Y = NULL,
lambda = NA_real_,
psigx = NA_real_,
psigy = NA_real_,
thresh = 1e-05,
maxit = 1e+05,
learning.rate = 0.01,
family = gaussian,
optim.maxit = 100,
optim.thresh = 0.01,
nfolds = 10
)
## S4 method for signature 'matrix,numeric'
cv.edgenet(
X,
Y,
G.X = NULL,
G.Y = NULL,
lambda = NA_real_,
psigx = NA_real_,
psigy = NA_real_,
thresh = 1e-05,
maxit = 1e+05,
learning.rate = 0.01,
family = gaussian,
optim.maxit = 100,
optim.thresh = 0.01,
nfolds = 10
)
## S4 method for signature 'matrix,matrix'
cv.edgenet(
X,
Y,
G.X = NULL,
G.Y = NULL,
lambda = NA_real_,
psigx = NA_real_,
psigy = NA_real_,
thresh = 1e-05,
maxit = 1e+05,
learning.rate = 0.01,
family = gaussian,
optim.maxit = 100,
optim.thresh = 0.01,
nfolds = 10
)
|
X |
input matrix, of dimension ( |
Y |
output matrix, of dimension ( |
G.X |
non-negativ affinity matrix for |
G.Y |
non-negativ affinity matrix for |
lambda |
|
psigx |
|
psigy |
|
thresh |
|
maxit |
maximum number of iterations for the optimizer
( |
learning.rate |
step size for Adam optimizer ( |
family |
family of response, e.g. gaussian or binomial |
optim.maxit |
the maximum number of iterations for the optimization
( |
optim.thresh |
|
nfolds |
the number of folds to be used - default is 10 |
An object of class cv.edgenet
parameters |
the estimated, optimal regularization parameters |
lambda |
optimal estimated value for regularization parameter lambda (or, if provided as argument, the value of the parameter) |
psigx |
optimal estimated value for regularization parameter psigx (or, if provided as argument, the value of the parameter) |
psigy |
optimal estimated value for regularization parameter psigy (or, if provided as argument, the value of the parameter) |
estimated.parameters |
names of parameters that were estimated |
family |
family used for estimated |
fit |
an |
call |
the call that produced the object |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | X <- matrix(rnorm(100 * 10), 100, 10)
b <- matrix(rnorm(100), 10)
G.X <- abs(rWishart(1, 10, diag(10))[, , 1])
G.Y <- abs(rWishart(1, 10, diag(10))[, , 1])
diag(G.X) <- diag(G.Y) <- 0
# estimate the parameters of a Gaussian model
Y <- X %*% b + matrix(rnorm(100 * 10), 100)
## dont use affinity matrices and estimate lambda
fit <- cv.edgenet(
X = X, Y = Y, family = gaussian,
maxit = 1, optim.maxit = 1
)
## only provide one matrix and estimate lambda
fit <- cv.edgenet(
X = X, Y = Y, G.X = G.X, psigx = 1, family = gaussian,
maxit = 1, optim.maxit = 1
)
## estimate only lambda with two matrices
fit <- cv.edgenet(
X = X, Y = Y, G.X = G.X, G.Y, psigx = 1, psigy = 1,
family = gaussian, maxit = 1, optim.maxit = 1
)
## estimate only psigx
fit <- cv.edgenet(
X = X, Y = Y, G.X = G.X, G.Y, lambda = 1, psigy = 1,
family = gaussian, maxit = 1, optim.maxit = 1
)
## estimate all parameters
fit <- cv.edgenet(
X = X, Y = Y, G.X = G.X, G.Y,
family = gaussian, maxit = 1, optim.maxit = 1
)
## if Y is vectorial, we cannot use an affinity matrix for Y
fit <- cv.edgenet(
X = X, Y = Y[, 1], G.X = G.X,
family = gaussian, maxit = 1, optim.maxit = 1
)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.