Nothing
## -----------------------------------------------------------------------------
library(tensorflow)
library(tfprobability)
library(netReg)
## -----------------------------------------------------------------------------
# parameters
n <- 100
p <- 10
q <- 10
# affinity matrices
G.X <- abs(rWishart(1, 10, diag(p))[,,1])
G.Y <- abs(rWishart(1, 10, diag(q))[,,1])
## -----------------------------------------------------------------------------
# data
X <- matrix(rnorm(n * p), n)
B <- matrix(rnorm(p * q), p)
Y <- X %*% B + matrix(rnorm(n * q, 0, 0.1), n)
fit <- edgenet(X=X, Y=Y, G.X=G.X, G.Y=G.Y, family=gaussian, maxit=10)
summary(fit)
## -----------------------------------------------------------------------------
coef(fit)[,1:5]
## -----------------------------------------------------------------------------
pred <- predict(fit, X)
pred[1:5, 1:5]
## ---- echo=FALSE, error=FALSE, warning=FALSE, message=FALSE, results=FALSE----
try({
edgenet(X=X, Y=Y, G.X=G.X, G.Y=G.Y, family=binomial, maxit=11)
})
## -----------------------------------------------------------------------------
# data
X <- matrix(rnorm(n * p), n)
B <- matrix(rnorm(p * q), p)
eta <- 1 / (1 + exp(-X %*% B))
Y.binom <- do.call("cbind", lapply(seq(10), function(.) rbinom(n, 1, eta[,.])))
fit <- edgenet(X=X, Y=Y, G.X=G.X, G.Y=G.Y, family=binomial, maxit=10)
summary(fit)
## -----------------------------------------------------------------------------
# data
X <- matrix(rnorm(n * p), n)
B <- matrix(rnorm(p * q), p)
eta <- exp(-X %*% B)
Y.pois <- do.call("cbind", lapply(seq(10), function(.) rpois(n, eta[,.])))
fit <- edgenet(X=X, Y=Y.pois, G.X=G.X, G.Y=G.Y, family=poisson, maxit=10)
summary(fit)
## -----------------------------------------------------------------------------
cv <- cv.edgenet(X=X, Y=Y, G.X=G.Y, G.Y, family=gaussian, optim.maxit=10, maxit=10)
summary(cv)
## -----------------------------------------------------------------------------
summary(cv$fit)
## -----------------------------------------------------------------------------
coef(cv)[,1:5]
## -----------------------------------------------------------------------------
pred <- predict(cv, X)
pred[1:5, 1:5]
## ---- eval=FALSE--------------------------------------------------------------
# library(netReg)
# data("yeast")
#
# ls(yeast)
#
# X <- yeast$X
# Y <- yeast$Y
# G.Y <- yeast$GY
## -----------------------------------------------------------------------------
fit <- edgenet(X=X, Y=Y, G.Y=G.Y, lambda=5, family=gaussian, maxit=10, thresh=1e-3)
summary(fit)
## -----------------------------------------------------------------------------
X.new <- matrix(rnorm(10 * ncol(X)), 10)
pred <- predict(fit, X.new)
pred[1:10, 1:5]
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.