Nothing
# netReg: graph-regularized linear regression models.
#
# Copyright (C) 2015 - 2020 Simon Dirmeier
#
# This file is part of netReg.
#
# netReg is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# netReg is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with netReg. If not, see <http://www.gnu.org/licenses/>.
#' @title Fit a linear regression model the group lasso penalty
#'
#' @export
#' @docType methods
#' @rdname grouplasso-methods
#'
#' @importFrom stats gaussian binomial
#'
#' @description Fit a linear regression model the group LASSO penalty.
#'
#' @param X input matrix, of dimension (\code{n} x \code{p})
#' where \code{n} is the number of observations and \code{p} is the number
#' of covariables. Each row is an observation vector.
#' @param Y output matrix, of dimension (\code{n} x \code{q})
#' where \code{n} is the number of observations and \code{q} is the number
#' of response variables. Each row is an observation vector.
#' @param grps vector of integers or \code{NA_integer_} of length \code{p}
#' that encodes the grouping of variables, e.g., \code{c(1, 1, 2, 2, NA)}
#' @param lambda \code{numerical} shrinkage parameter
#' @param thresh \code{numerical} threshold for optimizer
#' @param maxit maximum number of iterations for optimizer
#' (\code{integer})
#' @param learning.rate step size for Adam optimizer (\code{numerical})
#' @param family family of response, e.g., \emph{gaussian} or \emph{binomial}
#'
#' @return An object of class \code{edgenet}
#' \item{beta }{ the estimated (\code{p} x \code{q})-dimensional
#' coefficient matrix B.hat}
#' \item{alpha }{ the estimated (\code{q} x \code{1})-dimensional
#' vector of intercepts}
#' \item{parameters }{ regularization parameters}
#' \item{lambda }{ regularization parameter lambda)}
#' \item{family }{ a description of the error distribution and link function
#' to be used. Can be a \code{\link[netReg:family]{netReg::family}} function or a character string
#' naming a family function, e.g. \code{gaussian} or "gaussian".}
#' \item{call }{ the call that produced the object}
#'
#' @examples
#' X <- matrix(rnorm(100 * 10), 100, 5)
#' b <- rnorm(5)
#' grps <- c(NA_integer_, 1L, 1L, 2L, 2L)
#'
#' # estimate the parameters of a Gaussian model
#' Y <- X %*% b + rnorm(100)
#' fit <- group.lasso(X = X, Y = Y, grps = grps, family = gaussian, maxit = 10)
#'
#' @references
#' Yuan, Ming and Lin, Yi (2006),
#' Model selection and estimation in regression with grouped variables. \cr
#' \emph{Journal of the Royal Statistical Society: Series B}\cr \cr
#' Meier, Lukas and Van De Geer, Sara and Bühlmann, Peter (2008),
#' The group lasso for logistic regression. \cr
#' \emph{Journal of the Royal Statistical Society: Series B}
#'
setGeneric(
"group.lasso",
function(X, Y, grps = NULL,
lambda = 1,
thresh = 1e-5, maxit = 1e5, learning.rate = 0.01,
family = gaussian) {
standardGeneric("group.lasso")
},
package = "netReg"
)
#' @rdname grouplasso-methods
setMethod(
"group.lasso",
signature = signature(X = "matrix", Y = "numeric"),
function(X, Y, grps = NULL,
lambda = 1,
thresh = 1e-5, maxit = 1e5, learning.rate = 0.01,
family = gaussian) {
group.lasso(
X, as.matrix(Y), grps,
lambda,
thresh, maxit, learning.rate,
family
)
}
)
#' @rdname grouplasso-methods
setMethod(
"group.lasso",
signature = signature(X = "matrix", Y = "matrix"),
function(X, Y, grps = NULL,
lambda = 1,
thresh = 1e-5, maxit = 1e5, learning.rate = 0.01,
family = gaussian) {
stopifnot(
is.numeric(maxit), is.numeric(thresh),
is.numeric(learning.rate)
)
if (is.null(grps)) {
grps <- rep(NA_integer_, ncol(X))
}
stopifnot(
all(is.integer(grps)),
max(grps, na.rm = TRUE) <= ncol(X),
min(grps, na.rm = TRUE) >= 1
)
check.matrices(X, Y)
check.dimensions(X, Y, nrow(X), ncol(X))
lambda <- check.param(lambda, 0, `<`, 0)
maxit <- check.param(maxit, 0, `<`, 1e5)
thresh <- check.param(thresh, 0, `<`, 1e-5)
family <- get.family(family)
# estimate coefficients
ret <- .group.lasso(
x = X, y = Y, grps = grps,
lambda = lambda,
thresh = thresh, maxit = maxit,
learning.rate = learning.rate, family = family
)
ret$call <- match.call()
class(ret) <- c(class(ret), "group.lasso")
ret
}
)
#' @noRd
.group.lasso <- function(x, y, grps,
lambda, thresh, maxit, learning.rate, family) {
p <- ncol(x)
q <- ncol(y)
reset_graph()
x <- cast_float(x)
y <- cast_float(y)
alpha <- zero_vector(q) + 1
beta <- zero_matrix(p, q) + 1
# estimate coefficients
loss <- group.lasso.loss(grps, family)
objective <- loss(alpha, beta, lambda, x, y)
res <- fit(objective, alpha, beta, maxit, learning.rate, thresh)
# finalize output
beta <- res$beta
alpha <- res$alpha
rownames(beta) <- colnames(x)
colnames(beta) <- colnames(y)
ret <- list(
beta = beta,
alpha = alpha,
parameters = c("lambda" = lambda),
lambda = lambda
)
ret$family <- family
class(ret) <- paste0(family$family, ".group.lasso")
ret
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.