R/print.nem.R

Defines functions print.nem print.nem.greedy print.ModuleNetwork print.pairwise print.triples print.nem.greedyMAP print.nem.jackknife print.nem.bootstrap print.nem.consensus print.nem.BN print.mc.eminem print.dynoNEM print.score print.score.list

Documented in print.dynoNEM print.mc.eminem print.ModuleNetwork print.nem print.nem.BN print.nem.bootstrap print.nem.consensus print.nem.greedy print.nem.greedyMAP print.nem.jackknife print.pairwise print.score print.triples

print.nem <- function(x, ...) {

  # general
  cat("Object of class ",class(x),"\n")
  cat("\n")
  
  # slots
  cat("$graph:  phenotypic hierarchy (graphNEL object) with",ncol(x$graph),"genes\n")  
  cat("Inference scheme: ",x$control$type,"\n")
  if(length(x$mLL) == 1)
  	cat("log posterior (marginal) likelihood $mLL:", x$mLL, "\n")  
  if(x$control$type == "mLL")
  	cat("Error probabilities alpha and beta:", x$control$para,"\n")
  if(x$control$type == "FULLmLL")
  	cat("Hyperparameters for error probability distributions:", x$control$hyperpara, "\n")
  cat("network structure regularization parameter $lambda (default: 0):",x$control$lambda ,"\n")  
  cat("Prior weight $delta for assigning E-genes to virtual S-gene 'null' (default: 1):",x$control$delta ,"\n")
  if(!is(x, "score.list")){
	  cat(length(x$selected), " selected E-genes:\n")
	  for(i in 1:length(x$mappos)){
		cat("-->", names(x$mappos)[i], ":", length(x$mappos[[i]]), " attached E-genes\n")
	  }
	  cat("\nNOTE: One E-gene can be attached to multiple S-genes\n")
	  cat("\n")
  }     
}
  
print.nem.greedy = function(x, ...){
	print.nem(x, ...)
}

print.ModuleNetwork= function(x, ...){
	print.nem(x, ...)
}

print.pairwise = function(x, ...){
	print.nem(x, ...)
	cat("$scores: posterior distributions of local models\n")
	cat("\n")
	
	# summary
	cat("Summary of MAP estimates:\n") 
	tmp         <- table(apply(x$scores[,1:4],1,which.max))
	summ        <- c(sum(tmp),tmp[1],tmp[2]+tmp[3],tmp[4])
	names(summ) <- c("all","..","->","<->")
	print(summ)
}

print.triples = function(x, ...){
	print.nem(x, ...)
}

print.nem.greedyMAP = function(x, ...){
	print.nem(x, ...)
}

print.nem.jackknife = function(x, ...){
	print.nem(x, ...)
}

print.nem.bootstrap = function(x, ...){
	print.nem(x, ...)
}

print.nem.consensus = function(x, ...){
	print.nem(x, ...)
}

print.nem.BN = function(x, ...){
	print.nem(x, ...)
}

print.mc.eminem = function(x, ...){
	print.nem(x, ...)
}

print.dynoNEM = function(x, ...){
	print.nem(x, ...)
}

print.score <- function(x, ...) {	
	cat("scores for ",length(x$mLL)," models\n")	
	best = which.max(x$mLL)
	cat("--> best model is number ", best,"\nInformation on this model:\n")			
	x$mLL = x$mLL[best]
	x$mappos = x$mappos[[best]]	
	print.nem(x, ...)
	#cat("\n")  
	#cat("plot this object to see the graph\n")
}

print.score.list <- function(x, ...) {	
	cat("scores for ",length(x$mLL)," models\n")	
	best = which.max(x$mLL)
	cat("--> best model is number ", best,"\nInformation on this model:\n")			
	x$mLL = x$mLL[best]
	print.nem(x, ...)	
	#cat("\n")  
	#cat("plot this object to see the graph\n")
}

Try the nem package in your browser

Any scripts or data that you put into this service are public.

nem documentation built on Oct. 31, 2019, 2:12 a.m.