Nothing
#' Compute average pairwise correlation and overlapping area
#'
#' This function computes average pairwise correlation and overlapping area of
#' each sample pair.
#' @param ncGTWinput A list in which each element is a \code{\link{ncGTWinput}}
#' object.
#' @param sampleRt A list of the same length as the sample number in which each
#' element is a vector corresponding to the sample raw/adjusted RT.
#' @details This function computes the pairwise correlation and overlapping area
#' of each sample pair from the input feature, and then takes average.
#' @return A list in which the first element is average pairwise correlation,
#' and the second one is average overlapping area.
#' @examples
#' # obtain data
#' data('xcmsExamples')
#' xcmsLargeWin <- xcmsExamples$xcmsLargeWin
#' xcmsSmallWin <- xcmsExamples$xcmsSmallWin
#' ppm <- xcmsExamples$ppm
#'
#' # detect misaligned features
#' excluGroups <- misalignDetect(xcmsLargeWin, xcmsSmallWin, ppm)
#'
#' # obtain the paths of the sample files
#' filepath <- system.file("extdata", package = "ncGTW")
#' file <- list.files(filepath, pattern="mzxml", full.names=TRUE)
#'
#' tempInd <- matrix(0, length(file), 1)
#' for (n in seq_along(file)){
#' tempCha <- file[n]
#' tempLen <- nchar(tempCha)
#' tempInd[n] <- as.numeric(substr(tempCha, regexpr("example", tempCha) + 7,
#' tempLen - 6))
#' }
#' # sort the paths by data acquisition order
#' file <- file[sort.int(tempInd, index.return = TRUE)$ix]
#'
#' # load the sample profiles
#' ncGTWinputs <- loadProfile(file, excluGroups)
#'
#' XCMSCor <- matrix(0, length(ncGTWinputs), 1)
#' XCMSOl <- matrix(0, length(ncGTWinputs), 1)
#' for (n in seq_along(ncGTWinputs)){
#' XCMSmean <- meanCorOl(ncGTWinputs[[n]],
#' slot(xcmsLargeWin, 'rt')$corrected)
#' XCMSCor[n] <- XCMSmean$cor
#' XCMSOl[n] <- XCMSmean$ol
#' }
#' @export
meanCorOl <- function(ncGTWinput, sampleRt){
if (!is(ncGTWinput, 'ncGTWinput'))
stop('ncGTWoutput should be a "ncGTWoutput" object.')
samNum <- dim(ncGTWinput@rtRaw)[1]
if (length(sampleRt) != samNum)
stop('sampleRt should be a list with length as same as sample number.')
pointNum <- dim(ncGTWinput@rtRaw)[2]
profiles <- ncGTWinput@profiles
rtRange <- matrix(0, samNum, pointNum)
for (n in seq_len(samNum)){
profiles[n, ] <- gaussFilter(profiles[n, ])
rtRange[n, ] <- sampleRt[[n]][ncGTWinput@rtRaw[n, ]]
}
proInter <- matrix(0, samNum, pointNum * 10)
interX <- seq(max(rtRange[ , 1]), min(rtRange[ , pointNum]),
length.out=pointNum * 10)
for (n in seq_len(samNum))
proInter[n, ] <- approx(rtRange[n, ], profiles[n, ], interX,
yleft=NA, yright=NA)$y
corM <- cor(t(proInter))
olM <- matrix(0, samNum, samNum)
for (i in seq_len(samNum))
for (j in i:samNum){
olM[i, j] <- sum(pmin(proInter[i, ], proInter[j, ])) /
min(sum(proInter[i, ]), sum(proInter[j, ]))
olM[j, i] <- olM[i, j]
}
return(list(cor=mean(corM), ol=mean(olM)))
}
#' Compare CV
#'
#' This function calculates the coefficient of variation of each feature.
#' @param XCMSresFilled A \code{\link[xcms]{xcmsSet-class}} object.
#' @param na.rm Omit the samples in which the feature is not detected, and the
#' default is FALSE.
#' @details This function calculates the coefficient of variation of each
#' feature across all the samples. If a sample is detected with more than one
#' peaks in the feature, the function will pick the one with the highest
#' intensity value.
#' @return A vector of the same length as the row number of the \code{group}
#' slot in \code{XCMSresFilled}, in which each element is the CV.
#' @examples
#' # obtain data
#' data('xcmsExamples')
#' xcmsLargeWin <- xcmsExamples$xcmsLargeWin
#'
#' cv <- compCV(xcmsLargeWin)
#' @export
compCV <- function(XCMSresFilled, na.rm = FALSE){
if (!is(XCMSresFilled, 'xcmsSet'))
stop('XCMSresFilled should be a "xcmsSet" object.')
groupNum <- dim(XCMSresFilled@groups)[1]
sampleNum <- max(XCMSresFilled@peaks[, 'sample'])
XCMSpeaks <- matrix(0, groupNum, sampleNum)
XCMScv <- matrix(0, groupNum, 1)
for (n in seq_len(groupNum)){
XCMSgroupPeaks <- XCMSresFilled@peaks[XCMSresFilled@groupidx[[n]], ]
XCMSonePeak <- matrix(0, sampleNum, dim(XCMSresFilled@peaks)[2])
colnames(XCMSonePeak) <- colnames(XCMSgroupPeaks)
for (m in seq_len(sampleNum)){
XCMSpeakInd <- which(XCMSgroupPeaks[, 'sample'] == m)
XCMSpeakInd <- XCMSpeakInd[which.max(XCMSgroupPeaks[XCMSpeakInd,
'into'])]
if (length(XCMSpeakInd) == 0){
XCMSonePeak[m, ] <- NA
} else{
XCMSonePeak[m, ] <- XCMSgroupPeaks[XCMSpeakInd, ]
}
}
XCMSpeaks[n, ] <- XCMSonePeak[ , 'into']
XCMScv[n] <- sd(XCMSpeaks[n, ], na.rm = na.rm)/mean(XCMSpeaks[n, ],
na.rm = na.rm)
}
return(XCMScv)
}
gaussFilter <- function(prof, sig=1){
sz <- ceiling(sig * 6) # length of gaussian filter vector
if (sz < 2){
sz <- 2
}
if (sz %% 2 != 0){
sz <- sz + 1
}
x <- seq(-sz / 2, sz / 2, length=sz + 1)
filterVec <- exp(-x ^ 2 / (2 * sig ^ 2))
filterVec <- filterVec / sum (filterVec) # normalize
filtered <- convolve(prof, filterVec, type='open')
return(filtered[(sz / 2 + 1):(length(filtered) - sz / 2)])
}
rt2scan <- function(rt, rtAll)
return(which.min(abs(rtAll - rt)))
smoTest <- function(xcmsLargeWin, groupInd, dataSub, scanRange,
sampleInd, path2, downSample, scanRangeOld){
peaks <- xcmsLargeWin@peaks
groupidx <- xcmsLargeWin@groupidx
rtXCMS <- xcmsLargeWin@rt$corrected
rtRaw <- xcmsLargeWin@rt$raw
prePeaks <- findUniPeak(peaks, groupInd, groupidx, sampleInd=sampleInd)
if (length(prePeaks) == 0 || length(unique(prePeaks[ , 'sample'])) == 1)
return(matrix(-1, 3, 3))
prePeakInd <- prePeaks[ , 'sample']
prePeakMed <- prePeaks[, 'rt']
sampleCount <- table(prePeakInd)
groupNum <- max(sampleCount)
groupSam <- as.numeric(names(which(sampleCount == groupNum)))
maxNum <- 0
maxRange <- 0
maxInd <- 1
for (ind in seq_len(length(groupSam))){
samPeaks <- prePeaks[prePeaks[ , 'sample'] == groupSam[ind], 'rt']
tempNum <- length(samPeaks)
if (tempNum < maxNum )
next
tempRange <- max(samPeaks) - min(samPeaks)
if (tempNum > maxNum ){
maxNum <- tempNum
maxRange <- tempRange
maxInd <- groupSam[ind]
} else if (tempRange > maxRange){
maxRange <- tempRange
maxInd <- groupSam[ind]
}
}
groupSam <- maxInd
if (groupNum == 1){
kmeansPreInd <- kmeans(prePeakMed, 1)
} else{
kmeansPreInd <- kmeans(prePeakMed, prePeakMed[prePeakInd == groupSam])
}
oriPeakGroup <- vector('list', groupNum)
XCMSPeakGroup <- vector('list', groupNum)
ncGTWPeakGroup <- vector('list', groupNum)
for (n in seq_len(groupNum))
XCMSPeakGroup[[n]] <- prePeakMed[kmeansPreInd$cluster == n]
ncGTWPeakMed <- prePeakMed * 0
oriPeakMed <- prePeakMed * 0
for (n in seq_len(length(ncGTWPeakMed))){
samInd <- prePeaks[n, 'sample']
samSubInd <- which(sampleInd == prePeaks[n, 'sample'])
indDif <- abs(scanRange[samInd, ] - rt2scan(prePeakMed[n],
rtXCMS[[samInd]]))
minIndDif <- min(indDif)
medInd <- which(indDif == minIndDif)
medInd <- medInd[which.max(dataSub[samSubInd, medInd])]
fRange <- round(3 / mean(diff(rtRaw[[samInd]][scanRange[samInd,]])))
if (medInd - fRange < 1){
staInd <- 1
} else {
staInd <- medInd - fRange
}
if (medInd + fRange > dim(dataSub)[2]){
endInd <- dim(dataSub)[2]
} else{
endInd <- medInd + fRange
}
apexRange <- staInd:endInd
apexInd <- apexRange[which.max(dataSub[samSubInd, apexRange])]
oriPeakMed[n] <- rtRaw[[samInd]][scanRange[samInd, apexInd]]
samPath <- path2[[samSubInd]]
scanSubncGTW <-
round(mean(samPath[which(samPath[ , 2] == apexInd), 1]))
scanncGTW <- (scanSubncGTW - 1) * downSample
if (scanncGTW > dim(scanRangeOld)[2])
scanncGTW <- dim(scanRangeOld)[2]
ncGTWPeakMed[n] <- scanSubncGTW
}
oriPeakRt <- cbind(oriPeakMed, prePeaks[, 'rtmin'] - prePeakMed +
oriPeakMed, prePeaks[, 'rtmax'] - prePeakMed + oriPeakMed)
ncGTWPeakRt <- cbind(ncGTWPeakMed, ncGTWPeakMed)
kmeansOriInd <-
kmeans(oriPeakRt, oriPeakRt[prePeakInd == groupSam, , drop=FALSE])
kmeansncGTWInd <-
kmeans(ncGTWPeakRt, unique(ncGTWPeakRt[prePeakInd == groupSam, ,
drop=FALSE]))
for (n in seq_len(groupNum)){
oriPeakGroup[[n]] <- oriPeakMed[kmeansOriInd$cluster == n]
ncGTWPeakGroup[[n]] <- ncGTWPeakMed[kmeansncGTWInd$cluster == n]
}
statResult <- matrix(0, 3, 2)
statResult[1, 1] <-
sum(vapply(oriPeakGroup, var, vector("double", 1)), na.rm=TRUE)
statResult[2, 1] <-
sum(vapply(XCMSPeakGroup, var, vector("double", 1)), na.rm=TRUE)
statResult[3, 1] <-
sum(vapply(ncGTWPeakGroup, var, vector("double", 1)), na.rm=TRUE)
statResult[1, 2] <- max(vapply(oriPeakGroup,
function(x) range(x)[2] - range(x)[1], vector("double", 1)))
statResult[2, 2] <- max(vapply(XCMSPeakGroup,
function(x) range(x)[2] - range(x)[1], vector("double", 1)))
statResult[3, 2] <- max(vapply(ncGTWPeakGroup,
function(x) range(x)[2] - range(x)[1], vector("double", 1)))
return(statResult)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.