Nothing
### R code from vignette source 'mvGST.Rnw'
###################################################
### code chunk number 1: mvGST.Rnw:25-26
###################################################
options(continue=" ")
###################################################
### code chunk number 2: mvGST.Rnw:115-118
###################################################
library(mvGST)
data(mvGSTsamples)
head(obatoclax.pvals)
###################################################
### code chunk number 3: mvGST.Rnw:168-169
###################################################
head(parathyroid.pvals)
###################################################
### code chunk number 4: mvGST.Rnw:265-270
###################################################
library(hgu133plus2.db)
test1 <- profileTable(obatoclax.pvals, gene.ID='affy',
affy.chip='hgu133plus2', organism='hsapiens',
minsize=10, maxsize=200)
test1
###################################################
### code chunk number 5: mvGST.Rnw:273-277
###################################################
# Get which profile is c(-1, 0)
k <- which(rownames(test1$results.table)=="c(-1, 0)")
num.k <- as.numeric(test1$results.table[k,2])
res <- pickOut(test1, row=k, col=2)
###################################################
### code chunk number 6: mvGST.Rnw:306-307
###################################################
as.data.frame(apply(head(res),2,strtrim,width=60))
###################################################
### code chunk number 7: mvGST.Rnw:325-327
###################################################
temp <- go2Profile(c("GO:0002274", "GO:0002544", "GO:dummy"), test1)
temp
###################################################
### code chunk number 8: mvGST.Rnw:330-335
###################################################
row <- temp$`GO:0002544`
tab <- row$results.table
rn <- rownames(tab)
t <- tab[,1]==1
prof <- unlist(strsplit(rn[t],"c"))[2]
###################################################
### code chunk number 9: mvGST.Rnw:346-349
###################################################
# Get which profile is c(-1, 0)
k <- which(rownames(test1$results.table)=="c(-1, 0)")
num.k <- as.numeric(test1$results.table[k,2])
###################################################
### code chunk number 10: mvGST.Rnw:362-363
###################################################
graphCell(test1, row=k, col=2, print.legend=FALSE, interact=FALSE)
###################################################
### code chunk number 11: mvGST.Rnw:392-395
###################################################
test2 <- profileTable(parathyroid.pvals, gene.ID='ensembl',
organism='hsapiens')
test2
###################################################
### code chunk number 12: mvGST.Rnw:398-402
###################################################
# Get which profile is c(-1, -1, -1)
k <- which(rownames(test2$results.table)=="c(-1, -1, -1)")
num.k <- as.numeric(test2$results.table[k,1])
res <- pickOut(test2, row=k, col=1)
###################################################
### code chunk number 13: mvGST.Rnw:426-427
###################################################
as.data.frame(apply(head(res),2,strtrim,width=60))
###################################################
### code chunk number 14: mvGST.Rnw:448-449
###################################################
graphCell(test2, row=k, col=1, print.legend=FALSE, interact=FALSE)
###################################################
### code chunk number 15: mvGST.Rnw:484-486 (eval = FALSE)
###################################################
## test3 <- profileTable(parathyroid.pvals, gene.ID='ensembl',
## organism='hsapiens', mult.adj='SFL')
###################################################
### code chunk number 16: mvGST.Rnw:499-504
###################################################
library(GO.db)
xx <- as.list(GOBPANCESTOR)
ancs <- sort( union( xx$`GO:0001775`, xx$`GO:0007275` ) )[-1]
GOids <- c('GO:0001775','GO:0007275', ancs)
GOids
###################################################
### code chunk number 17: mvGST.Rnw:510-514
###################################################
t <- is.element(test2$group.names, GOids)
frame <- as.data.frame(test2$grouped.raw[t,])
pvals <- frame$OHT_DPN.BP
names(pvals) <- test2$group.names[t]
###################################################
### code chunk number 18: mvGST.Rnw:520-522
###################################################
SFL.pvals <- p.adjust.SFL(pvals, ontology='BP', sig.level=.10)
cbind(pvals, SFL.pvals)
###################################################
### code chunk number 19: mvGST.Rnw:652-720 (eval = FALSE)
###################################################
## ### Objective is to identify gene sets differentially active
## ### in one or more of the following comparisons:
## ## G1 = RS4:11 cell line at low dose (vs. control)
## ## G2 = RS4:11 cell line at high dose (vs. control)
## ## G3 = SEM-K2 cell line at low dose (vs. control)
## ## G4 = SEM-K2 cell line at high dose (vs. control)
## #
## ## Read in data
## library(affy)
## data <- ReadAffy(celfile.path="C:\\folder\\data")
## eset <- exprs(rma(data))
## colnames(eset)
## # [1] "CR1.CEL" "CR2.CEL" "CS1.CEL" "CS2.CEL" "HR1.CEL" "HR2.CEL" "HS1.CEL"
## # [8] "HS2.CEL" "LR1.CEL" "LR2.CEL" "LS1.CEL" "LS2.CEL"
## #
## # Define simple function to convert two-tailed p-values to one-tailed,
## # based on means of comparison groups
## # - this assumes null: Mean2=Mean1 and alt: Mean2>Mean1, and
## # diff = Mean2-Mean1
## p2.p1 <- function(p,diff)
## {
## p1 <- rep(NA,length(p))
## t <- diff >=0
## p1[t] <- p[t]/2
## p1[!t] <- 1-p[!t]/2
## return(p1)
## }
## #
## # Define function to return one-tailed p-values for a specific contrast,
## # sorted in order of geneNames
## p1.ctrst <- function(ctr)
## {
## ctr <<- ctr
## ctrst <- makeContrasts(ctr, levels=design)
## fit.ctrst <- contrasts.fit(fit, ctrst)
## final.fit.ctrst <- eBayes(fit.ctrst)
## top.ctrst <- topTableF(final.fit.ctrst, n=nrow(eset))
## p1 <- p2.p1(top.ctrst$P.Value, top.ctrst[,1])
## gn <- rownames(top.ctrst)
## names(p1) <- gn
## t <- order(gn)
## return(p1[t])
## }
## #
## ## Fit model
## library(limma)
## trt <- rep(c('C','H','L'),each=4)
## line <- rep(rep(c('R','S'),each=2),3)
## design <- model.matrix(~0+trt:line)
## head(design)
## colnames(design) <- c('CR','HR','LR','CS','HS','LS')
## fit <- lmFit(eset, design)
## #
## ## Create contrasts
## # R: L vs. C (G1)
## Low.RS4 <- p1.ctrst(ctr="LR-CR")
## # R: H vs. C (G2)
## High.RS4 <- p1.ctrst("HR-CR")
## # S: L vs. C (G3)
## Low.SEMK2 <- p1.ctrst("LS-CS")
## # S: H vs. C (G4)
## High.SEMK2 <- p1.ctrst("HS-CS")
## #
## ## Assemble object for mvGST
## GN <- names(Low.RS4)
## o.pvals <- cbind(Low.RS4, High.RS4, Low.SEMK2, High.SEMK2)
## rownames(o.pvals) <- GN
## obatoclax.pvals <- o.pvals
###################################################
### code chunk number 20: mvGST.Rnw:738-767 (eval = FALSE)
###################################################
## # Load data
## library("parathyroidSE")
## data("parathyroidGenesSE")
## se <- parathyroidGenesSE
## colnames(se) <- colData(se)$run
## #
## # Fit model
## library("DESeq2")
## dds <- DESeqDataSet(se = se, design = ~ patient + treatment)
## design(dds) <- ~ patient + treatment
## ddsCtrst1 <- DESeq(dds)
## resultsNames(ddsCtrst1)
## #
## # Create contrasts
## res1 <- results(ddsCtrst1, contrast=c("treatment", "OHT", "DPN"))
## res2 <- results(ddsCtrst1, contrast=c("treatment", "OHT", "Control"))
## res3 <- results(ddsCtrst1, contrast=c("treatment", "DPN", "Control"))
## #
## # Assemble object for mvGST
## r1 <- res1[!is.na(res1$pvalue),]
## r2 <- res1[!is.na(res2$pvalue),]
## r3 <- res1[!is.na(res3$pvalue),]
## OHT_DPN <- p2.p1(r1$pvalue,r1$log2FoldChange)
## OHT_Control <- p2.p1(r2$pvalue,r2$log2FoldChange)
## DPN_Control <- p2.p1(r3$pvalue,r3$log2FoldChange)
## p.pvals <- cbind(OHT_DPN,OHT_Control,DPN_Control)
## GN <- rownames(r1)
## rownames(p.pvals) <- GN
## parathyroid.pvals <- p.pvals
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.