Nothing
#' resDS
#' Formatting of DS analysis results
#'
#' \code{resDS} provides a simple wrapper to format cluster-level
#' differential testing results into an easily filterable table, and
#' to optionally append gene expression frequencies by cluster-sample
#' & -group, as well as cluster-sample-wise CPM.
#'
#' @param x a \code{\link[SingleCellExperiment]{SingleCellExperiment}}.
#' @param y a list of DS testing results as returned
#' by \code{\link{pbDS}} or \code{\link{mmDS}}.
#' @param bind character string specifying the output format (see details).
#' @param frq logical or a pre-computed list of expression frequencies
#' as returned by \code{\link{calcExprFreqs}}.
#' @param cpm logical specifying whether CPM by cluster-sample
#' should be appendeded to the output result table(s).
#' @param digits integer value specifying the
#' number of significant digits to maintain.
#' @param sep character string to use as separator
#' when constructing new column names.
#' @param ... optional arguments passed to
#' \code{\link{calcExprFreqs}} if \code{frq = TRUE}.
#'
#' @details When \code{bind = "col"}, the list of DS testing results at
#' \code{y$table} will be merge vertically (by column) into a single table
#' in tidy format with column \code{contrast/coef} specifying the comparison.
#'
#' Otherwise, when \code{bind = "row"}, an identifier of the respective
#' contrast or coefficient will be appended to the column names,
#' and all tables will be merge horizontally (by row).
#'
#' Expression frequencies pre-computed with \code{\link{calcExprFreqs}}
#' may be provided with \code{frq}. Alternatively, when \code{frq = TRUE},
#' expression frequencies can be computed directly, and additional arguments
#' may be passed to \code{\link{calcExprFreqs}} (see examples below).
#'
#' @return returns a `data.frame`.
#'
#' @examples
#' data(sce)
#'
#' # compute pseudobulks (sum of counts)
#' pb <- aggregateData(sce, assay = "counts", fun = "sum")
#'
#' # run DS analysis (edgeR on pseudobulks)
#' res <- pbDS(pb, method = "edgeR")
#'
#' head(resDS(sce, res, bind = "row")) # tidy format
#' head(resDS(sce, res, bind = "col", digits = Inf))
#'
#' # append CPMs & expression frequencies
#' head(resDS(sce, res, cpm = TRUE))
#' head(resDS(sce, res, frq = TRUE))
#'
#' # pre-computed expression frequencies & append
#' frq <- calcExprFreqs(sce, assay = "counts", th = 0)
#' head(resDS(sce, res, frq = frq))
#'
#' @author Helena L Crowell & Mark D Robinson
#'
#' @importFrom dplyr %>% bind_rows inner_join full_join mutate mutate_if select
#' @importFrom edgeR cpm
#' @importFrom methods is
#' @importFrom purrr reduce
#' @importFrom SummarizedExperiment colData
#' @importFrom S4Vectors metadata
#' @export
resDS <- function(x, y, bind = c("row", "col"),
frq = FALSE, cpm = FALSE, digits = 3, sep = "__", ...) {
# check validity of input arguments
.check_sce(x, req_group = TRUE)
#.check_res(x, y)
bind <- match.arg(bind)
if (!is.logical(frq))
.check_frq(x, frq)
stopifnot(is.infinite(digits) || is.numeric(digits) &
digits > 0 & as.integer(digits) == digits)
ei <- metadata(x)$experiment_info
kids <- levels(x$cluster_id)
res <- switch(bind,
row = {
bind_rows(lapply(y$table, bind_rows))
},
col = {
ct <- ifelse(!is.null(y$args$contrast), "contrast", "coef")
cs <- names(y$table)
res <- lapply(cs, function(c) {
df <- bind_rows(y$table[[c]])
df <- select(df, -ct)
i <- !colnames(df) %in% c("gene", "cluster_id")
colnames(df)[i] <- paste(colnames(df)[i], c, sep = sep)
return(df)
})
reduce(res, full_join, by = c("gene", "cluster_id"))
})
.tidy <- function(u, ei, append = "") {
m1 <- match(ei$sample_id, colnames(u))
m2 <- match(levels(ei$group_id), colnames(u))
if (all(is.na(m2))) m2 <- 0
colnames(u)[m1] <- paste0(ei$sample_id, append)
colnames(u)[m2] <- paste0(colnames(u)[m2], append)
k <- seq_len(ncol(u))[-c(m1, m2)]
u[, c(k, m1[order(ei$group)], m2)]
}
# append expression frequencies
if (is.logical(frq))
if (frq) frq <- calcExprFreqs(x, ...) else frq <- NULL
if (!is.null(frq)) {
frq <- data.frame(
gene = rep(rownames(x), length(assays(frq))),
cluster_id = rep(assayNames(frq), each = nrow(x)),
do.call("rbind", as.list(assays(frq))),
row.names = NULL, check.names = FALSE, stringsAsFactors = FALSE)
frq <- .tidy(frq, ei, append = ".frq")
res <- inner_join(frq, res, by = c("gene", "cluster_id"))
}
# append CPMs
if (cpm) {
cpm <- lapply(kids, function(k) {
if (is.null(y$data[[k]])) return(NULL)
cpm <- cpm(y$data[[k]])
data.frame(gene = rownames(cpm), cluster_id = k, cpm,
row.names = NULL, check.names = FALSE, stringsAsFactors = FALSE)
})
cpm <- bind_rows(cpm)
cpm <- .tidy(cpm, ei, append = ".cpm")
res <- inner_join(cpm, res, by = c("gene", "cluster_id"))
}
mutate_if(res, is.numeric, signif, digits)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.