Description Usage Arguments Details Value Author(s) References Examples
Projecting supplementary tables on moa-class
1 |
X |
An object of class |
sup |
A list of data.frames contains supplementary data. |
nf |
The number of principal components used in the projection. |
factors |
The index of principal components used in the projection, used when non-consecutive PC to be included in the analysis. |
ks.stat |
The logical indicates if the p-value should be calculated using K-S statistic (the method used in "ssgsea" in GSVA package). Default is FALSE, which means using the z-score method. |
ks.B |
An integer to indicate the number of bootstrapping samples to calculated the p-value of KS statistic. |
ks.cores |
An integer indicate the number of cores to be used in bootstrapping. It is passed to function |
p.adjust.method |
The method of p value adjustment, passed to |
Projecting supplementary tables on moa-class
, for details see reference.
An object of class moa.sup-class
.
Chen Meng
Herve Abdi, Lynne J. Williams, Domininique Valentin and Mohammed Bennani-Dosse. STATIS and DISTATIS: optimum multitable principal component analysis and three way metric multidimensional scaling. WIREs Comput Stat 2012. Volume 4, Issue 2, pages 124-167 Haenzelmann, S., Castelo, R. and Guinney, J. GSVA: Gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics, 14:7, 2013. Barbie, D.A. et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature, 462(5):108-112, 2009.
1 2 3 4 5 6 7 8 9 10 11 12 13 | # library(mogsa)
# loading gene expression data and supplementary data
data(NCI60_4array_supdata)
data(NCI60_4arrays)
# check the dimension of each supplementary data to see how many gene set annotated the data
sapply(NCI60_4array_supdata, dim)
# run analysis
ana <- moa(NCI60_4arrays, proc.row = "center_ssq1", w.data = "inertia", statis = TRUE)
plot(ana, value="eig")
# projectin supplementary data
smoa <- sup.moa(ana, sup=NCI60_4array_supdata, nf=3)
# heatmap visualize the gene set scores
heatmap(slot(smoa, "score"))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.