Description Objects from the Class Slots Methods Author(s) References Examples
moa class object
Objects can be created by calls of the form new("moa", ...)
.
eig
:eigen values
tau
:The percentage of explained variance by each datasets sparately.
partial.eig
:matrix, rows indicate the partial eigenvalues from each data.
eig.vec
:a matrix, eigenvectors.
loading
:the coordinate of variables/features.
fac.scr
:factor score of observations.
partial.fs
:partial factor score.
ctr.obs
:contribution of each observation to the total factor score.
ctr.var
:contribution of each variables to the total variance.
ctr.tab
:contribution of each data to the total variance.
RV
:pairwise RV coefficients
w.row
:weight of rows
w.data
:weight of datasets
data
:the original input data
tab.dim
:the dimension of each input data
call
:call
signature(x = "moa", y = "missing")
:
Argument "value" sould be one of "eig", "tau", "obs", "var" and "RV"
if value = "eig", the eigenvalue would be plotted as scree plot. The following arguments could be set:
type=1 - The type of plot to show eigenvalues. (type=1: the eigenvalue are plotted; type=2: partial eigenvalue shown as concatenated bars; type=3: partial eigenvalue shown as bars side by side; type=4: matplot view of eigenvales, lty need to be set; type=5; the two dimensional plot of partial eigenvalues, axes and pch need to be set in this case.)
axes=NULL - The axes selected to plot
n=NULL - Top n eigenvalues to be drawn
tol=1e-5 - The tolerance of eigenvalue, eigenvalues lower than this value will not be shown.
legend=NULL - legend to put, a character string as calling legend function
col=NULL - The color of partial eigenvalues from each data set
lty=1 - The line type used in the matplot, used when type =4
pch=NULL - the pch to draw 2D partial eigen plot, when type = 5 used
lg.x="topright" - The position of legend
lg.y=NULL - Poistion argument passed to function "legend"
... - other arguemnts passed to functions
if value = "tau", the same with eig, but in the eigenvalues are scaled to 1
if value = "obs", the observation space will be shown, the following argument could be set:
axes=1:2 - Which axes should be draw
type=1 - Which type, see below (for type=1: the center points draw; type=2: the separate factor scores linked by lines; ... will be passed to function "points")
data.pch=20 - the pch of dataset, if type=1, the first one is used
col=1 - the color of observations, recycled used by data.frame
label=FALSE - A logical indicates if labels should be shown
lg.x="topright" - Position of legend
lg.y=NULL - Position of legend
xlim=NULL - The x limit
ylim=NULL - The y limit
label.cex=1 - the cex of text
...
var - the separate gene view, layout can be specified
RV - the heatmap of RV coefficients
signature(x = "moa", y = "missing")
:
show "moa" object
Chen Meng
Herve Abdi, Lynne J. Williams, Domininique Valentin and Mohammed Bennani-Dosse. STATIS and DISTATIS: optimum multitable principal component analysis and three way metric multidimensional scaling. WIREs Comput Stat 2012. Volume 4, Issue 2, pages 124-167
Herve Abdi, Lynne J. Williams, Domininique Valentin. Multiple factor analysis: principal component analysis for multitable and multiblock data sets. WIREs Comput Stat 2013
1 2 3 4 5 6 7 | showClass("moa")
# load("R/mogsa/data/NCI60_4arrays.rda")
data(NCI60_4arrays)
ana <- moa(NCI60_4arrays, proc.row = "center_ssq1", w.data = "inertia", statis = TRUE)
plot(ana, value="eig")
plot(ana, value="tau", type=2)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.