Nothing
# ========================================================================================================
# mint.splsda: perform a vertical sPLS-DA on a combination of experiments, input as a matrix in X
# this function is a particular setting of internal_mint.block,
# the formatting of the input is checked in internal_wrapper.mint, which then call 'internal_mint.block'
# ========================================================================================================
#' P-integration with Discriminant Analysis and variable selection
#'
#' Function to combine multiple independent studies measured on the same
#' variables or predictors (P-integration) using variants of multi-group sparse
#' PLS-DA for supervised classification with variable selection.
#'
#' \code{mint.splsda} function fits a vertical sparse PLS-DA models with
#' \code{ncomp} components in which several independent studies measured on the
#' same variables are integrated. The aim is to classify the discrete outcome
#' \code{Y} and select variables that explain the outcome. The \code{study}
#' factor indicates the membership of each sample in each study. We advise to
#' only combine studies with more than 3 samples as the function performs
#' internal scaling per study, and where all outcome categories are
#' represented.
#'
#' \code{X} can contain missing values. Missing values are handled by being
#' disregarded during the cross product computations in the algorithm
#' \code{mint.splsda} without having to delete rows with missing data.
#' Alternatively, missing data can be imputed prior using the
#' \code{\link{impute.nipals}} function.
#'
#' The type of deflation used is \code{'regression'} for discriminant algorithms.
#' i.e. no deflation is performed on Y.
#'
#' Variable selection is performed on each component for \code{X} via input
#' parameter \code{keepX}.
#'
#' Useful graphical outputs are available, e.g. \code{\link{plotIndiv}},
#' \code{\link{plotLoadings}}, \code{\link{plotVar}}.
#'
#' @inheritParams mint.plsda
#' @inheritParams mint.spls
#' @return \code{mint.splsda} returns an object of class \code{"mint.splsda",
#' "splsda"}, a list that contains the following components:
#'
#' \item{X}{the centered and standardized original predictor matrix.}
#' \item{Y}{the centered and standardized original response vector or matrix.}
#' \item{ind.mat}{the centered and standardized original response vector or
#' matrix.} \item{ncomp}{the number of components included in the model.}
#' \item{study}{The study grouping factor} \item{mode}{the algorithm used to
#' fit the model.} \item{keepX}{Number of variables used to build each
#' component of X} \item{variates}{list containing the variates of X - global
#' variates.} \item{loadings}{list containing the estimated loadings for the
#' variates - global loadings.} \item{variates.partial}{list containing the
#' variates of X relative to each study - partial variates.}
#' \item{loadings.partial}{list containing the estimated loadings for the
#' partial variates - partial loadings.} \item{names}{list containing the names
#' to be used for individuals and variables.} \item{nzv}{list containing the
#' zero- or near-zero predictors information.} \item{iter}{Number of iterations
#' of the algorithm for each component} \item{prop_expl_var}{Percentage of
#' explained variance for each component and each study (note that contrary to
#' PCA, this amount may not decrease as the aim of the method is not to
#' maximise the variance, but the covariance between X and the dummy matrix
#' Y).}
#' @author Florian Rohart, Kim-Anh Lê Cao, Al J Abadi
#' @seealso \code{\link{spls}}, \code{\link{summary}}, \code{\link{plotIndiv}},
#' \code{\link{plotVar}}, \code{\link{predict}}, \code{\link{perf}},
#' \code{\link{mint.pls}}, \code{\link{mint.plsda}}, \code{\link{mint.plsda}}
#' and http://www.mixOmics.org/mixMINT for more details.
#' @references Rohart F, Eslami A, Matigian, N, Bougeard S, Lê Cao K-A (2017).
#' MINT: A multivariate integrative approach to identify a reproducible
#' biomarker signature across multiple experiments and platforms. BMC
#' Bioinformatics 18:128.
#'
#' Eslami, A., Qannari, E. M., Kohler, A., and Bougeard, S. (2014). Algorithms
#' for multi-group PLS. J. Chemometrics, 28(3), 192-201.
#'
#' mixOmics article:
#'
#' Rohart F, Gautier B, Singh A, Lê Cao K-A. mixOmics: an R package for 'omics
#' feature selection and multiple data integration. PLoS Comput Biol 13(11):
#' e1005752
#' @keywords regression multivariate
#' @export
#' @examples
#'
#' data(stemcells)
#'
#' # -- feature selection
#' res = mint.splsda(X = stemcells$gene, Y = stemcells$celltype, ncomp = 3, keepX = c(10, 5, 15),
#' study = stemcells$study)
#'
#' plotIndiv(res)
#' #plot study-specific outputs for all studies
#' plotIndiv(res, study = "all.partial")
#'
#' \dontrun{
#' #plot study-specific outputs for study "2"
#' plotIndiv(res, study = "2")
#'
#' #plot study-specific outputs for study "2", "3" and "4"
#' plotIndiv(res, study = c(2, 3, 4))
#' }
mint.splsda <- function(X,
Y,
ncomp = 2,
study,
keepX = rep(ncol(X), ncomp),
scale = TRUE,
tol = 1e-06,
max.iter = 100,
near.zero.var = FALSE,
all.outputs = TRUE)
{
#-- validation des arguments --#
# most of the checks are done in 'internal_wrapper.mint'
if (is.null(Y))
stop("'Y' has to be something else than NULL.")
if (is.null(dim(Y)))
{
Y = factor(Y)
} else {
stop("'Y' should be a factor or a class vector.")
}
Y.mat = unmap(Y)
colnames(Y.mat) = levels(Y)
X = as.matrix(X)
if (length(study) != nrow(X))
stop(paste0("'study' must be a factor of length ", nrow(X), "."))
if (sum(apply(table(Y, study) != 0, 2, sum) == 1) > 0)
stop(
"At least one study only contains a single level of the multi-levels outcome Y. The MINT algorithm cannot be computed."
)
if (sum(apply(table(Y, study) == 0, 2, sum) > 0) > 0)
warning(
"At least one study does not contain all the levels of the outcome Y. The MINT algorithm might not perform as expected."
)
# call to 'internal_wrapper.mint'
result <- internal_wrapper.mint(
X = X,
Y = Y.mat,
ncomp = ncomp,
near.zero.var = near.zero.var,
study = study,
mode = 'regression',
keepX = keepX,
max.iter = max.iter,
tol = tol,
scale = scale,
all.outputs = all.outputs
)
# choose the desired output from 'result'
out <- list(
call = match.call(),
X = result$A[-result$indY][[1]],
Y = Y,
ind.mat = result$A[result$indY][[1]],
ncomp = result$ncomp,
study = result$study,
mode = result$mode,
keepX = result$keepX,
keepY = result$keepY,
variates = result$variates,
loadings = result$loadings,
variates.partial = result$variates.partial,
loadings.partial = result$loadings.partial,
names = result$names,
tol = result$tol,
iter = result$iter,
max.iter = result$max.iter,
nzv = result$nzv,
scale = result$scale,
prop_expl_var = result$prop_expl_var
)
class(out) <- c("mint.splsda", "mixo_splsda", "mixo_spls", "DA")
return(invisible(out))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.