Nothing
### R code from vignette source 'miRNApath.Rnw'
###################################################
### code chunk number 1: miRNApath.Rnw:61-62
###################################################
library("miRNApath")
###################################################
### code chunk number 2: miRNApath.Rnw:79-94
###################################################
## Start with miRNA data from this package
data(mirnaobj);
## Write a file as example of required input
write.table(mirnaobj@mirnaTable, file="mirnaTable.txt",
quote=FALSE, row.names=FALSE, col.names=TRUE, na="",
sep="\t");
## Now essentially load it back, but assign column headers
mirnaobj <- loadmirnapath( mirnafile="mirnaTable.txt",
pvaluecol="P-value", groupcol="GROUP",
mirnacol="miRNA Name", assayidcol="ASSAYID" );
## Display summary information for the resulting object
mirnaobj;
###################################################
### code chunk number 3: miRNApath.Rnw:103-104
###################################################
mirnaobj@columns["pvaluecol"] <- "P-value";
###################################################
### code chunk number 4: miRNApath.Rnw:111-113
###################################################
mirnaobj <- filtermirnapath( mirnaobj, pvalue=0.05,
expression=NA, foldchange=NA );
###################################################
### code chunk number 5: miRNApath.Rnw:122-133
###################################################
## Again we load data from the package
data(mirnaobj);
## Write a file as example of required miRNA-gene input
write.table(mirnaobj@mirnaGene, file="mirnaGene.txt",
quote=FALSE, row.names=FALSE, col.names=TRUE, na="",
sep="\t");
## For consistency to a new user's workflow, remove pathways
mirnaobj@pathwaycount = 0;
mirnaobj@mirnaPathways = data.frame();
###################################################
### code chunk number 6: miRNApath.Rnw:135-143
###################################################
## Load the miRNA to gene associations
mirnaobj <- loadmirnatogene( mirnafile="mirnaGene.txt",
mirnaobj=mirnaobj, mirnacol="miRNA Name",
genecol="Entrez Gene ID",
columns=c(assayidcol="ASSAYID") );
## Display summary, noting the miRNA-gene predictions
mirnaobj;
###################################################
### code chunk number 7: miRNApath.Rnw:154-161
###################################################
## Again we load data from the package
data(mirnaobj);
## Write a file as example of required input
write.table(mirnaobj@mirnaPathways, file="mirnaPathways.txt",
quote=FALSE, row.names=FALSE, col.names=TRUE, na="",
sep="\t");
###################################################
### code chunk number 8: miRNApath.Rnw:163-170
###################################################
## Load the gene to pathway associations
mirnaobj <- loadmirnapathways( mirnaobj=mirnaobj,
pathwayfile="mirnaPathways.txt",
pathwaycol="Pathway Name", genecol="Entrez Gene ID");
## Display summary, noting the number of pathways reported
mirnaobj;
###################################################
### code chunk number 9: miRNApath.Rnw:179-183
###################################################
Groups = unique(mirnaobj@mirnaTable[,
mirnaobj@columns["groupcol"] ]);
mirnaobj <- runEnrichment( mirnaobj=mirnaobj, Composite=TRUE,
groups=Groups[grep("^AD.+(UP|DOWN)",Groups)], permutations=0 );
###################################################
### code chunk number 10: miRNApath.Rnw:196-202
###################################################
finaltable <- mirnaTable( mirnaobj, groups=NULL, format="Tall",
Significance=0.1, pvalueTypes=c("pvalues","permpvalues"),
maxStringLength=42 );
## Display only the first few rows of the best P-values...
finaltable[sort(finaltable[,"pvalues"], index.return=TRUE)$ix,][1:5,];
###################################################
### code chunk number 11: heatmap
###################################################
## Example which calls heatmap function on the resulting data
widetable <- mirnaTable( mirnaobj, groups=NULL, format="Wide",
Significance=0.3, na.char=NA, pvalueTypes=c("pvalues") );
## Assign 1 to NA values, assuming they're all equally
## non-significant
widetable[is.na(widetable)] <- 1;
## Display a heatmap of the result across sample groups
pathwaycol <- mirnaobj@columns["pathwaycol"];
pathwayidcol <- mirnaobj@columns["pathwayidcol"];
rownames(widetable) <- apply(widetable[,c(pathwaycol,
pathwayidcol)], 1, function(i)paste(i, collapse="-"));
wt <- as.matrix(widetable[3:dim(widetable)[2]], mode="numeric");
pathwaySubset = apply(wt, 1, function(i)length(i[i<0.2])>1)
## Print out a heatmap
par(ps="8");
heatmap(log2(wt[pathwaySubset,]), scale="row",
cexRow=0.9, margins=c(15,12));
###################################################
### code chunk number 12: miRNApath.Rnw:245-247 (eval = FALSE)
###################################################
## grid.newpage()
##
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.