Nothing
## Matching grouped data with the database of standards Input: msp data object containing the samples, a msp data object
## containing the preprocessed DB, and some settings in the form of a list. Output: a list of two elements, both nested
## lists: the first indicates which pseudospectrum in which sample is associated to which standard, the second contains the
## spectral match factors.
## New implementation, only doing spectral matching for those cases where the rt differences are below the threshold. Much
## faster!
matchSamples2DB <- function(xset.msp, DB, settings, quick) {
if (settings$timeComparison == "RI") {
standard.rts <- sapply(DB, function(x) x$std.RI)
## rt.matches is a list of two-column matrices, one for each xset.msp element. The first column gives the DB entry that
## matches with the sample entry in the second column. This is very fast to calculate.
rt.matches <- lapply(1:length(xset.msp), function(ii) {
group.rts <- sapply(xset.msp[[ii]], function(x) mean(x[, "RI"]))
which(abs(outer(standard.rts, group.rts, FUN = "-")) < settings$RIdiff, arr.ind = TRUE)
})
} else {
standard.rts <- sapply(DB, function(x) x$std.rt)
rt.matches <- lapply(1:length(xset.msp), function(ii) {
group.rts <- sapply(xset.msp[[ii]], function(x) mean(x[, "rt"]))
which(abs(outer(standard.rts, group.rts, FUN = "-")) < settings$rtdiff, arr.ind = TRUE)
})
}
if (quick) {
## xset.msp has already been scaled
match.results <- lapply(1:length(xset.msp), function(ii) {
if (nrow(rt.matches[[ii]] > 0)) {
result <- matrix(0, length(DB), length(xset.msp[[ii]]))
for (i in 1:nrow(rt.matches[[ii]])) {
DB.idx <- rt.matches[[ii]][i, 1]
sample.idx <- rt.matches[[ii]][i, 2]
result[DB.idx, sample.idx] <- mzmatch(DB[[DB.idx]]$pspectrum, xset.msp[[ii]][[sample.idx]])
}
}
result
})
} else {
## scaling is done for each comparison separately, since high mz values may be removed depending on MonoMW of the standard
## compound. Slower, obviously.
match.results <- lapply(1:length(xset.msp), function(ii) {
result <- matrix(0, length(DB), length(xset.msp[[ii]]))
if (nrow(rt.matches[[ii]] > 0)) {
for (i in 1:nrow(rt.matches[[ii]])) {
DB.idx <- rt.matches[[ii]][i, 1]
sample.idx <- rt.matches[[ii]][i, 2]
exp.pat <- xset.msp[[ii]][[sample.idx]]
MWlimit <- DB[[DB.idx]]$monoMW + 4
## sometimes, with manually added spectra, monoMW is not present... then we use everything up until the highest mass present.
if (length(MWlimit) == 0)
MWlimit <- max(DB[[DB.idx]]$pspectrum[, 1])
ok.mz <- which(exp.pat[, "mz"] <= MWlimit)
if (length(ok.mz) > settings$minfeat) {
exp.pat <- treat.DB(list(exp.pat[ok.mz, ]), isMSP = FALSE)
result[DB.idx, sample.idx] <- mzmatch(DB[[DB.idx]]$pspectrum, exp.pat[[1]])
}
}
}
result
})
}
names(match.results) <- names(xset.msp)
annotations <- lapply(match.results, function(xx) {
sapply(1:ncol(xx), function(ii) which(xx[, ii] > settings$simthresh))
})
list(annotations = mapply(annotations2tab, annotations, match.results, SIMPLIFY = FALSE))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.