Nothing
library("gplots")
massi_cluster_plot <- function(massi_select_data, massi_cluster_data) {
#start new graphics device
dev.new()
# generate a heatmap of y.chromosome.subset values
ord <- order(rowSums(abs(massi_select_data)),decreasing=T)
heatmap.2(x=as.matrix(massi_select_data[ord,]), keysize=2, cexRow=0.7,
key=T, trace="none", dendrogram="row", col=redgreen(75), scale="row")
massi.cluster.results <- data.frame(massi_cluster_data[[2]])
massi.cluster.results.sort <- massi.cluster.results[order(massi.cluster.results$sex),] # sort data by sex
probe.means <- massi.cluster.results.sort$mean_y_probes_value # samples probe mean values
probe.sd <- massi.cluster.results.sort$y_probes_sd # sample probe sd values
sample.names <- massi.cluster.results.sort$ID # set x-axis names
plot.top <- ceiling(max(probe.means+probe.sd*1.1)) # set y-axis upper limit
plot.bottom <- floor(min(probe.means-probe.sd*1.1)) # set y-axis lower limit
sample.sex <- massi.cluster.results.sort$sex # set the factor for bar color
# create the plot
barCenters <- barplot(probe.means, xpd=F, names.arg=massi_cluster_data$ID, cex.names=0.7,
ylab="Chr.Y mean probe value +/- SD",
xlab="",
col=c("red", "green")[as.factor(sample.sex)],
las=2, ylim=c(plot.bottom,plot.top))
segments(barCenters, probe.means-probe.sd, # add the sd bars
barCenters, probe.means+probe.sd, lwd=0.8)
legend("topleft", fill=c("red", "green"), title="predicted sex", ## add legend to plot
legend=c("female", "male"), cex=0.5, )
## generate PC plot of clusters
k.medoids.results <- massi_cluster_data[[1]]
#y.kmedoids <- get(k.medoids.results)
clusplot(t(massi_select_data), k.medoids.results$clustering, color=TRUE, shade=FALSE, main="",cex.txt=0.5,
labels=2, lines=0)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.