Nothing
######################################################################
#
# fitmaanova.R
#
# copyright (c) 2001-2004, Hao Wu and Gary A. Churchill, The Jackson Lab.
#
# written Dec, 2003
#
# Licensed under the GNU General Public License version 2 (June, 1991)
#
# Part of the R/maanova package
#
#
######################################################################
fom <- function(anovaobj, idx.gene, term, ngroups)
{
# check input data
if (class(anovaobj) != "maanova")
stop("The first input variable is not an object of class maanova.")
if( !(term %in% names(anovaobj)) )
stop(paste(term, "is not a field in anovaobj"))
# create local variables
VG <- anovaobj[[term]][idx.gene,]
nvars <- dim(VG)[2]
# max number of groups
maxgrp <- min(30, length(idx.gene)-1)
if(missing(ngroups)) # calculate FOM for only 1 group to 30 groups
ngroups <- 2:maxgrp
else {
if(ngroups < 2)
stop("Number of groups must be greater than or equal to 2")
if(length(ngroups) == 1) {
# provide ngroups as integer
if(ngroups>maxgrp)
stop("Group number cannot be greater than number of genes!")
else
ngroups <- 2:ngroups
}
}
# sample index
sampleidx <- 1:nvars
# normalize VG, subtract the column mean and divided by column sd
m <- apply(VG, 2, mean)
sd <- apply(VG, 2, sd)
normVG <- t(apply(VG, 1, function(x) (x-m)/sd))
# output variable
f <- rep(0, length(ngroups))
# calculate FOM
i <- 1
for (ngrp in ngroups) { #loop thru different number of clusters
for (samplej in sampleidx) { # loop thru all samples
# leave out sampleidx(samplej) and do cluster
sampleset <- setdiff(sampleidx, samplej)
# K-mean cluster the VG without for sampleidx(samplej)
class <- kmeans(normVG[,sampleset], ngrp)
# note that class is a vector with length(geneidx) to indicate which
# group each genes belong to
sigma <- 0 # weighted variance for the leave-out condition
for(k in 1:ngrp) { # loop thru the groups
idx <- which(class$cluster == k) # find the genes in group k
# calculate the within group variance for VGstar
if(length(idx) > 1) {# if there are any genes in this group
# proportion of genes in group k
alpha <- length(idx)/length(idx.gene)
sigma <- sigma + alpha*var(normVG[idx,samplej])
}
}
# calculate adjusted FOM for ngrp groups
f[i] <- f[i] + sqrt(sigma)
}
# adjust FOM
f[i] <- f[i] / sqrt((length(idx.gene)-ngrp)/length(idx.gene))
i <- i+1
}
# make the FOM plot
plot(ngroups, f, col="blue", main="FOM plot", type="l",
xlab="Number of groups", ylab="Figure of Merit value")
points(ngroups, f, col="blue")
invisible(f)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.