Nothing
## ----Init,echo=FALSE,message=FALSE,results='hide'-------------------
options(width=70)
options(useFancyQuotes=FALSE)
knitr::opts_knit$set(width=70)
set.seed(0)
library(kebabs)
kebabsVersion <- packageDescription("kebabs")$Version
kebabsDateRaw <- packageDescription("kebabs")$Date
kebabsDateYear <- as.numeric(substr(kebabsDateRaw, 1, 4))
kebabsDateMonth <- as.numeric(substr(kebabsDateRaw, 6, 7))
kebabsDateDay <- as.numeric(substr(kebabsDateRaw, 9, 10))
kebabsDate <- paste(month.name[kebabsDateMonth], " ",
kebabsDateDay, ", ",
kebabsDateYear, sep="")
## ----eval=F---------------------------------------------------------
# if (!requireNamespace("BiocManager", quietly=TRUE))
# install.packages("BiocManager")
# BiocManager::install("kebabs")
## -------------------------------------------------------------------
library(kebabs)
## ----eval=FALSE-----------------------------------------------------
# vignette("kebabs")
## ----eval=FALSE-----------------------------------------------------
# help(kebabs)
## -------------------------------------------------------------------
data(TFBS)
## -------------------------------------------------------------------
enhancerFB
length(enhancerFB)
## ----eval=FALSE-----------------------------------------------------
# hist(width(enhancerFB), breaks=30, xlab="Sequence Length",
# main="Distribution of Sequence Lengths", col="lightblue")
## ----echo=FALSE,results='hide'--------------------------------------
pdf("001.pdf", width=8, height=5.5)
hist(width(enhancerFB), breaks=30, xlab="Sequence Length",
main="Distribution of Sequence Lengths", col="lightblue")
dev.off()
## -------------------------------------------------------------------
showAnnotatedSeq(enhancerFB, sel=3)
## -------------------------------------------------------------------
head(yFB)
## -------------------------------------------------------------------
table(yFB)
## -------------------------------------------------------------------
numSamples <- length(enhancerFB)
trainingFraction <- 0.7
train <- sample(1:numSamples, trainingFraction * numSamples)
test <- c(1:numSamples)[-train]
## -------------------------------------------------------------------
specK2 <- spectrumKernel(k=2)
## -------------------------------------------------------------------
model <- kbsvm(x=enhancerFB[train], y=yFB[train], kernel=specK2,
pkg="e1071", svm="C-svc", cost=15)
## -------------------------------------------------------------------
pred <- predict(model, enhancerFB[test])
head(pred)
head(yFB[test])
## -------------------------------------------------------------------
evaluatePrediction(pred, yFB[test], allLabels=unique(yFB))
## -------------------------------------------------------------------
gappyK1M3 <- gappyPairKernel(k=1, m=3)
model <- kbsvm(x=enhancerFB[train], y=yFB[train],
kernel=gappyK1M3, pkg="e1071", svm="C-svc",
cost=15)
pred <- predict(model, enhancerFB[test])
evaluatePrediction(pred, yFB[test], allLabels=unique(yFB))
## -------------------------------------------------------------------
gappyK1M3 <- gappyPairKernel(k=1, m=3)
model <- kbsvm(x=enhancerFB[train], y=yFB[train],
kernel=gappyK1M3, pkg="LiblineaR", svm="C-svc",
cost=15)
pred <- predict(model, enhancerFB[test])
evaluatePrediction(pred, yFB[test], allLabels=unique(yFB))
## -------------------------------------------------------------------
gappyK1M3 <- gappyPairKernel(k=1, m=3)
model <- kbsvm(x=enhancerFB[train], y=yFB[train],
kernel=gappyK1M3, pkg="LiblineaR", svm="l1rl2l-svc",
cost=5)
pred <- predict(model, enhancerFB[test])
evaluatePrediction(pred, yFB[test], allLabels=unique(yFB))
## ----eval=FALSE-----------------------------------------------------
# ?kbsvm
## -------------------------------------------------------------------
specK2 <- spectrumKernel(k=2)
## -------------------------------------------------------------------
specK2 <- spectrumKernel(k=2, normalized=FALSE)
## -------------------------------------------------------------------
mismK3M1 <- mismatchKernel(k=3, m=1)
## -------------------------------------------------------------------
gappyK1M2 <- gappyPairKernel(k=1, m=2)
## -------------------------------------------------------------------
motifCollection1 <- c("A[CG]T","C.G","C..G.T","G[^A][AT]",
"GT.A[CA].[CT]G")
motif1 <- motifKernel(motifCollection1)
## -------------------------------------------------------------------
gappyK1M2ps <- gappyPairKernel(k=1, m=2, distWeight=1,
normalized=FALSE)
## -------------------------------------------------------------------
seq1 <- AAStringSet(c("GACGAGGACCGA","AGTAGCGAGGT","ACGAGGTCTTT",
"GGACCGAGTCGAGG"))
positionMetadata(seq1) <- c(3, 5, 2, 10)
## -------------------------------------------------------------------
wdK3 <- spectrumKernel(k=3, distWeight=1, mixCoef=c(0.5,0.33,0.17),
normalized=FALSE)
km <- getKernelMatrix(wdK3, seq1)
km
## -------------------------------------------------------------------
positionMetadata(seq1) <- NULL
km <- getKernelMatrix(wdK3, seq1)
km
## ----eval=F---------------------------------------------------------
# curve(linWeight(x, sigma=5), from=-25, to=25, xlab="p - q", ylab="weight",
# main="Predefined Distance Weighting Functions", col="green", lwd=2)
# curve(expWeight(x, sigma=5), from=-25, to=25, col="blue", lwd=2, add=TRUE)
# curve(gaussWeight(x, sigma=5), from=-25, to=25, col="red", lwd=2, add=TRUE)
# curve(swdWeight(x), from=-25, to=25, col="orange", lwd=2, add=TRUE)
# legend("topright", inset=0.03, title="Weighting Functions", c("linWeight",
# "expWeight", "gaussWeight", "swdWeight"), col=c("green", "blue",
# "red", "orange"), lwd=2)
# text(19, 0.55, expression(paste(sigma, " = 5")))
## ----echo=FALSE,results='hide'--------------------------------------
pdf("002.pdf", width=8, height=5.5)
curve(linWeight(x, sigma=5), from=-25, to=25, xlab="p - q", ylab="weight",
main="Predefined Distance Weighting Functions", col="green", lwd=2)
curve(expWeight(x, sigma=5), from=-25, to=25, col="blue", lwd=2, add=TRUE)
curve(gaussWeight(x, sigma=5), from=-25, to=25, col="red", lwd=2, n=201,
add=TRUE)
curve(swdWeight(x), from=-25, to=25, col="orange", lwd=2, add=TRUE)
legend("topright", inset=0.03, title="Weighting Functions", c("linWeight",
"expWeight", "gaussWeight", "swdWeight"), col=c("green", "blue",
"red", "orange"), lwd=2)
text(19, 0.55, expression(paste(sigma, " = 5")))
dev.off()
## -------------------------------------------------------------------
swdWeight <- function(d)
{
if (missing(d))
return(function(d) swdWeight(d))
1 / (2 * (abs(d) + 1))
}
swdK3 <- spectrumKernel(k=3, distWeight=swdWeight(),
mixCoef=c(0.5,0.33,0.17))
## -------------------------------------------------------------------
data(TFBS)
names(enhancerFB) <- paste("Sample", 1:length(enhancerFB), sep="_")
enhancerFB
kmSWD <- getKernelMatrix(swdK3, x=enhancerFB, selx=1:5)
kmSWD[1:5, 1:5]
## -------------------------------------------------------------------
udWeight <- function(d, base=2)
{
if (missing(d))
return(function(d) udWeight(d, base=base))
return(base^(-d))
}
specudK3 <- spectrumKernel(k=3, distWeight=udWeight(base=4),
mixCoef=c(0, 0.3, 0.7))
kmud <- getKernelMatrix(specudK3, x=enhancerFB, selx=1:5)
## ----eval=FALSE-----------------------------------------------------
# getGenesWithExonIntronAnnotation <- function(geneList, genomelib,
# txlib)
# {
# library(BSgenome)
# library(genomelib, character.only=TRUE)
# library(txlib, character.only=TRUE)
# genome <- getBSgenome(genomelib)
# txdb <- eval(parse(text=txlib))
# exonsByGene <- exonsBy(txdb, by ="gene")
#
# ## generate exon/intron annotation
# annot <- rep("", length(geneList))
# geneRanges <- GRanges()
# exonsSelGenes <- exonsByGene[geneList]
#
# if (length(exonsSelGenes) != length(geneList))
# stop("some genes are not found")
#
# for (i in 1:length(geneList))
# {
# exons <- unlist(exonsSelGenes[i])
# exonRanges <- ranges(exons)
# chr <- as.character(seqnames(exons)[1])
# strand <- as.character(strand(exons)[1])
# numExons <- length(width(exonRanges))
#
# for (j in 1:numExons)
# {
# annot[i] <-
# paste(annot[i],
# paste(rep("e", width(exonRanges)[j]),
# collapse=""), sep="")
#
# if (j < numExons)
# {
# annot[i] <-
# paste(annot[i],
# paste(rep("i", start(exonRanges)[j+1] -
# end(exonRanges)[j] - 1),
# collapse=""), sep="")
# }
# }
#
# geneRanges <-
# c(geneRanges,
# GRanges(seqnames=Rle(chr),
# strand=Rle(strand(strand)),
# ranges=IRanges(start=start(exonRanges)[1],
# end=end(exonRanges)[numExons])))
# }
#
# ## retrieve gene sequences
# seqs <- getSeq(genome, geneRanges)
# names(seqs) <- geneList
# ## assign annotation
# annotationMetadata(seqs, annCharset="ei") <- annot
# seqs
# }
#
# ## get gene sequences for HBA1 and HBA2 with exon/intron annotation
# ## 3039 and 3040 are the geneID values for HBA1 and HBA2
# hba <- getGenesWithExonIntronAnnotation(c("3039", "3040"),
# "BSgenome.Hsapiens.UCSC.hg19",
# "TxDb.Hsapiens.UCSC.hg19.knownGene")
## ----eval=FALSE-----------------------------------------------------
# annotationCharset(hba)
# showAnnotatedSeq(hba, sel=1, start=1, end=400)
## ----eval=FALSE-----------------------------------------------------
# specK2 <- spectrumKernel(k=2)
# specK2a <- spectrumKernel(k=2, annSpec=TRUE)
# erK2 <- getExRep(hba, specK2, sparse=FALSE)
# erK2[, 1:6]
# erK2a <- getExRep(hba, specK2a, sparse=FALSE)
# erK2a[, 1:6]
## ----eval=FALSE-----------------------------------------------------
# km <- linearKernel(erK2)
# km
# kma <- linearKernel(erK2a)
# kma
## -------------------------------------------------------------------
data(CCoil)
ccseq
ccannot[1:3]
head(yCC)
yCC <- as.numeric(yCC)
## delete annotation metadata
annotationMetadata(ccseq) <- NULL
annotationMetadata(ccseq)
gappy <- gappyPairKernel(k=1, m=10)
train <- sample(1:length(ccseq), 0.8 * length(ccseq))
test <- c(1:length(ccseq))[-train]
model <- kbsvm(ccseq[train], y=yCC[train], kernel=gappy,
pkg="LiblineaR", svm="C-svc", cost=100)
pred <- predict(model, ccseq[test])
evaluatePrediction(pred, yCC[test], allLabels=unique(yCC))
## -------------------------------------------------------------------
## assign annotation metadata
annotationMetadata(ccseq, annCharset="abcdefg") <- ccannot
annotationMetadata(ccseq)[1:5]
annotationCharset(ccseq)
showAnnotatedSeq(ccseq, sel=2)
gappya <- gappyPairKernel(k=1, m=10, annSpec=TRUE)
model <- kbsvm(ccseq[train], y=yCC[train], kernel=gappya,
pkg="LiblineaR", svm="C-svc", cost=100)
pred <- predict(model, ccseq[test])
evaluatePrediction(pred, yCC[test], allLabels=unique(yCC))
## -------------------------------------------------------------------
## grid search with two kernels and 6 hyperparameter values
## using the balanced accuracy as performance objective
model <- kbsvm(ccseq[train], y=yCC[train],
kernel=c(gappy, gappya), pkg="LiblineaR", svm="C-svc",
cost=c(1, 10, 50, 100, 200, 500), explicit="yes", cross=5,
perfParameters="ALL", perfObjective="BACC",
showProgress=TRUE)
result <- modelSelResult(model)
result
## -------------------------------------------------------------------
perfData <- performance(result)
perfData
which(perfData$BACC[1, ] == max(perfData$BACC[1, ]))
which(perfData$BACC[2, ] == max(perfData$BACC[2, ]))
## ----eval=FALSE-----------------------------------------------------
# plot(result, sel="BACC")
## ----echo=FALSE,results='hide'--------------------------------------
pdf("005.pdf", width=7, height=5)
plot(result, sel="BACC")
dev.off()
## -------------------------------------------------------------------
## position-independent spectrum kernel normalized
specK2 <- spectrumKernel(k=3)
#
## annotation specific spectrum normalized
specK2a <- spectrumKernel(k=3, annSpec=TRUE)
#
## spectrum kernel with presence normalized
specK2p <- spectrumKernel(k=3, presence=TRUE)
#
## mixed spectrum normalized
specK2m <- spectrumKernel(k=3, mixCoef=c(0.5, 0.33, 0.17))
#
## position-specific spectrum normalized
specK2ps <- spectrumKernel(k=3, distWeight=1)
#
## mixed position-specific spectrum kernel normalized
## also called weighted degree kernel normalized
specK2wd <- spectrumKernel(k=3, dist=1,
mixCoef=c(0.5, 0.33, 0.17))
#
## distance-weighted spectrum normalized
specK2lin <- spectrumKernel(k=3, distWeight=linWeight(sigma=10))
specK2exp <- spectrumKernel(k=3, distWeight=expWeight(sigma=10))
specK2gs <- spectrumKernel(k=3, distWeight=gaussWeight(sigma=10))
#
## shifted weighted degree with equal position weighting normalized
specK2swd <- spectrumKernel(k=3, distWeight=swdWeight(),
mixCoef=c(0.5, 0.33, 0.17))
#
## distance-weighted spectrum kernel with user defined distance
## weighting
udWeight <- function(d, base=2)
{
if (!(is.numeric(base) && length(base==1)))
stop("parameter 'base' must be a single numeric value\n")
if (missing(d))
return(function(d) udWeight(d, base=base))
if (!is.numeric(d))
stop("'d' must be a numeric vector\n")
return(base^(-d))
}
specK2ud <- spectrumKernel(k=3, distWeight=udWeight(b=2))
## -------------------------------------------------------------------
specK25 <- spectrumKernel(k=2:5)
specK25
train <- 1:100
model <- kbsvm(x=enhancerFB[train], y=yFB[train],
kernel=specK25, pkg="LiblineaR", svm="C-svc",
cost=c(1, 5, 10, 20, 50, 100), cross=5, explicit="yes",
showProgress=TRUE)
modelSelResult(model)
## -------------------------------------------------------------------
kernelList1 <- list(spectrumKernel(k=3), mismatchKernel(k=3, m=1),
gappyPairKernel(k=2, m=4))
## -------------------------------------------------------------------
kernelList2 <- c(spectrumKernel(k=2:4), gappyPairKernel(k=1, m=2:5))
## -------------------------------------------------------------------
specK2 <- spectrumKernel(k=2)
km <- getKernelMatrix(specK2, x=enhancerFB)
class(km)
dim(km)
km[1:3, 1:3]
## ----eval=FALSE-----------------------------------------------------
# heatmap(km, symm=TRUE)
## -------------------------------------------------------------------
specK2 <- spectrumKernel(k=2)
km <- specK2(x=enhancerFB)
km[1:3, 1:3]
## -------------------------------------------------------------------
km <- getKernelMatrix(specK2, x=enhancerFB, selx=c(1, 4, 25, 137, 300))
km
## -------------------------------------------------------------------
seqs1 <- enhancerFB[1:200]
seqs2 <- enhancerFB[201:500]
km <- getKernelMatrix(specK2, x=seqs1, y=seqs2)
dim(km)
km[1:4, 1:5]
## -------------------------------------------------------------------
km <- getKernelMatrix(specK2, x=enhancerFB, selx=1:200,
y=enhancerFB, sely=201:500)
dim(km)
## -------------------------------------------------------------------
specK2 <- spectrumKernel(k=2, normalized=FALSE)
erd <- getExRep(enhancerFB, selx=1:5, kernel=specK2, sparse=FALSE)
erd
## -------------------------------------------------------------------
specK6 <- spectrumKernel(k=6, normalized=FALSE)
erd <- getExRep(enhancerFB, selx=1:5, kernel=specK6,
sparse=FALSE)
dim(erd)
erd[, 1:6]
## -------------------------------------------------------------------
specK6 <- spectrumKernel(k=6, normalized=FALSE)
erd <- getExRep(enhancerFB, kernel=specK6, sparse=FALSE)
dim(erd)
object.size(erd)
ers <- getExRep(enhancerFB, kernel=specK6, sparse=TRUE)
dim(ers)
object.size(ers)
ers[1:5, 1:6]
## -------------------------------------------------------------------
library(apcluster)
gappyK1M4 <- gappyPairKernel(k=1, m=4)
km <- getKernelMatrix(gappyK1M4, enhancerFB)
apres <- apcluster(s=km, p=0.8)
length(apres)
## ----eval=FALSE-----------------------------------------------------
# aggres <- aggExCluster(km, apres)
# plot(aggres)
## ----echo=FALSE,results='hide'--------------------------------------
aggres <- aggExCluster(km, apres)
pdf("004.pdf")
plot(aggres)
dev.off()
## -------------------------------------------------------------------
exrep <- getExRep(enhancerFB, gappyK1M4, sparse=FALSE)
apres1 <- apcluster(s=linearKernel, x=exrep, p=0.1)
length(apres1)
## -------------------------------------------------------------------
exrep <- getExRep(x=enhancerFB, selx=1:5, gappyK1M4, sparse=FALSE)
dim(exrep)
erquad <- getExRepQuadratic(exrep)
dim(erquad)
erquad[1:5, 1:5]
## -------------------------------------------------------------------
gappyK1M4 <- gappyPairKernel(k=1, m=4)
exrep <- getExRep(enhancerFB, gappyK1M4, sparse=FALSE)
numSamples <- length(enhancerFB)
trainingFraction <- 0.8
train <- sample(1:numSamples, trainingFraction * numSamples)
test <- c(1:numSamples)[-train]
model <- kbsvm(x=exrep[train, ], y=yFB[train], kernel=gappyK1M4,
pkg="kernlab", svm="C-svc", cost=15)
pred <- predict(model, exrep[test, ])
evaluatePrediction(pred, yFB[test], allLabels=unique(yFB))
## -------------------------------------------------------------------
## compute symmetric kernel matrix for training samples
kmtrain <- getKernelMatrix(gappyK1M4, x=enhancerFB, selx=train)
model1 <- kbsvm(x=kmtrain, y=yFB[train], kernel=gappyK1M4,
pkg="e1071", svm="C-svc", cost=15)
## compute rectangular kernel matrix of test samples against support vectors
kmtest <- getKernelMatrix(gappyK1M4, x=enhancerFB, y=enhancerFB, selx=test,
sely=train)
pred1 <- predict(model1, kmtest)
evaluatePrediction(pred1, yFB[test], allLabels=unique(yFB))
## -------------------------------------------------------------------
preddec <- predict(model, exrep[test, ], predictionType="decision")
evaluatePrediction(pred, yFB[test], allLabels=unique(yFB),
decValues=preddec)
## -------------------------------------------------------------------
perf <- evaluatePrediction(pred, yFB[test], allLabels=unique(yFB),
decValues=preddec, print=FALSE)
perf
## ----eval=FALSE-----------------------------------------------------
# rocdata <- computeROCandAUC(preddec, yFB[test], unique(yFB))
# plot(rocdata, main="Receiver Operating Characteristics", col="red", lwd=2)
## ----echo=FALSE,results='hide'--------------------------------------
rocdata <- computeROCandAUC(preddec, yFB[test], unique(yFB))
pdf("008.pdf")
plot(rocdata, main="Receiver Operating Characteristics", col="red", lwd=2)
dev.off()
## -------------------------------------------------------------------
data(CCoil)
ccseq
head(yCC)
head(ccgroups)
gappyK1M6 <- gappyPairKernel(k=1, m=6)
model <- kbsvm(x=ccseq, y=as.numeric(yCC), kernel=gappyK1M6,
pkg="LiblineaR", svm="C-svc", cost=30, cross=3,
noCross=2, groupBy=ccgroups, perfObjective="BACC",
perfParameters=c("ACC", "BACC"))
cvResult(model)
## -------------------------------------------------------------------
specK24 <- spectrumKernel(k=2:4)
gappyK1M24 <- gappyPairKernel(k=1, m=2:4)
gridKernels <- c(specK24, gappyK1M24)
cost <- c(1, 10, 100, 1000, 10000)
model <- kbsvm(x=enhancerFB, y=yFB, kernel=gridKernels,
pkg="LiblineaR", svm="C-svc", cost=cost, cross=3,
explicit="yes", showProgress=TRUE)
modelSelResult(model)
## -------------------------------------------------------------------
specK34 <- spectrumKernel(k=3:4)
gappyK1M34 <- gappyPairKernel(k=1, m=3:4)
gridKernels <- c(specK34, gappyK1M34)
pkgs <- c("e1071", "LiblineaR", "LiblineaR")
svms <- c("C-svc","C-svc","l1rl2l-svc")
cost <- c(50, 50, 12)
model <- kbsvm(x=enhancerFB, y=yFB, kernel=gridKernels,
pkg=pkgs, svm=svms, cost=cost, cross=10,
explicit="yes", showProgress=TRUE,
showCVTimes=TRUE)
modelSelResult(model)
## -------------------------------------------------------------------
specK34 <- spectrumKernel(k=3:4)
gappyK1M34 <- gappyPairKernel(k=1, m=3:4)
gridKernels <- c(specK34, gappyK1M34)
cost <- c(10, 50, 100)
model <- kbsvm(x=enhancerFB, y=yFB, kernel=gridKernels,
pkg="LiblineaR", svm="C-svc", cost=cost, cross=10,
explicit="yes", nestedCross=4)
modelSelResult(model)
cvResult(model)
## -------------------------------------------------------------------
performance(cvResult(model))$foldErrors
## -------------------------------------------------------------------
head(yReg)
gappyK1M2 <- gappyPairKernel(k=1, m=2)
model <- kbsvm(x=enhancerFB, y=yReg, kernel=gappyK1M2,
pkg="e1071", svm="nu-svr", nu=c(0.5, 0.6, 0.7, 0.8),
cross=10, showProgress=TRUE)
modelSelResult(model)
## -------------------------------------------------------------------
numSamples <- length(enhancerFB)
trainingFraction <- 0.7
train <- sample(1:numSamples, trainingFraction * numSamples)
test <- c(1:numSamples)[-train]
model <- kbsvm(x=enhancerFB[train], y=yReg[train],
kernel=gappyK1M2, pkg="e1071", svm="nu-svr",
nu=0.7)
pred <- predict(model, enhancerFB[test])
mse <- sum((yReg[test] - pred)^2)/length(test)
mse
featWeights <- featureWeights(model)
colnames(featWeights)[which(featWeights > 0.4)]
## -------------------------------------------------------------------
model <- kbsvm(x=enhancerFB[train], y=yReg[train],
kernel=spectrumKernel(k=2), pkg="e1071", svm="nu-svr",
nu=0.7)
pred <- predict(model, enhancerFB[test])
featWeights <- featureWeights(model)
colnames(featWeights)[which(featWeights > 0.4)]
## -------------------------------------------------------------------
model <- kbsvm(x=enhancerFB[train], y=yReg[train],
kernel=spectrumKernel(k=2), pkg="e1071", svm="nu-svr",
nu=c(0.5, 0.55, 0.6), cross=10, nestedCross=5)
modelSelResult(model)
cvResult(model)
model <- kbsvm(x=enhancerFB[train], y=yReg[train],
kernel=gappyPairKernel(k=1,m=2), pkg="e1071",
svm="nu-svr", nu=c(0.6, 0.65, 0.7), cross=10,
nestedCross=5)
modelSelResult(model)
cvResult(model)
## -------------------------------------------------------------------
data(CCoil)
gappya <- gappyPairKernel(k=1,m=11, annSpec=TRUE)
model <- kbsvm(x=ccseq, y=as.numeric(yCC), kernel=gappya,
pkg="e1071", svm="C-svc", cost=15)
featureWeights(model)[,1:5]
GCN4 <- AAStringSet(c("MKQLEDKVEELLSKNYHLENEVARLKKLV",
"MKQLEDKVEELLSKYYHTENEVARLKKLV"))
names(GCN4) <- c("GCN4wt", "GCN_N16Y,L19T")
annCharset <- annotationCharset(ccseq)
annot <- c("abcdefgabcdefgabcdefgabcdefga",
"abcdefgabcdefgabcdefgabcdefga")
annotationMetadata(GCN4, annCharset=annCharset) <- annot
predProf <- getPredictionProfile(GCN4, gappya,
featureWeights(model),
modelOffset(model))
predProf
## ----eval=FALSE-----------------------------------------------------
# plot(predProf, sel=1, ylim=c(-0.4, 0.2), heptads=TRUE, annotate=TRUE)
## ----echo=FALSE,results='hide'--------------------------------------
pdf("006.pdf", width=7, height=5.5)
plot(predProf, sel=1, ylim=c(-0.4, 0.2), heptads=TRUE, annotate=TRUE)
dev.off()
## ----eval=FALSE-----------------------------------------------------
# plot(predProf, sel=c(1, 2), ylim=c(-0.4, 0.2), heptads=TRUE, annotate=TRUE)
## ----echo=FALSE,results='hide'--------------------------------------
pdf("007.pdf", width=7, height=5.5)
plot(predProf, sel=c(1, 2), ylim=c(-0.4, 0.2), heptads=TRUE, annotate=TRUE)
dev.off()
## -------------------------------------------------------------------
table(yMC)
gappyK1M2 <- gappyPairKernel(k=1, m=2)
model <- kbsvm(x=enhancerFB[train], y=yMC[train],
kernel=gappyK1M2, pkg="LiblineaR",
svm="C-svc", cost=300)
pred <- predict(model, enhancerFB[test])
evaluatePrediction(pred, yMC[test], allLabels=unique(yMC))
## -------------------------------------------------------------------
featWeights <- featureWeights(model)
length(featWeights)
featWeights[[1]][1:5]
featWeights[[2]][1:5]
featWeights[[3]][1:5]
## -------------------------------------------------------------------
predProf <- getPredictionProfile(enhancerFB, gappyK1M2,
featureWeights(model)[[2]],
modelOffset(model)[2])
predProf
## ----eval=FALSE-----------------------------------------------------
# toBibtex(citation("kebabs"))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.