Nothing
#2345678901234567890123456789012345678901234567890123456789012345678901234567890
## like in XString
toSeqSnippet <- function(x, width)
{
if (width < 7L)
width <- 7L
seqlen <- nchar(x)
if (seqlen <= width)
x
else
{
w1 <- (width - 2) %/% 2
w2 <- (width - 3) %/% 2
paste(substring(x, 1, w1), "...",
substring(x, seqlen - w2 + 1, seqlen), sep="")
}
}
show.BioVectorSeq <- function(object, index, wIndex, wWidth, wSeq,
wNames, withNames)
{
seqLength <- width(object)[index]
if (length(names(object)) > 0)
{
if (length(names(object)[index]) == 0)
currName = "<NA>"
else
{
if (nchar(names(object)[index]) > 20)
{
currName <- paste(substr(names(object)[index], 1, 17),
"...", sep="")
}
else
currName <- names(object)[index]
}
}
else
wSeq <- wSeq + wNames + 1
cat(format(paste("[", index, "]", sep=""), width=wIndex,
justify="right"), " ",
format(seqLength, width=wWidth, justify="right"), " ", sep="")
if (seqLength <= wSeq)
{
cat(format(object[[index]], width=wSeq,
justify="left"))
}
else
{
seqSnippet <- toSeqSnippet(object[index], width=wSeq)
cat(format(seqSnippet, width=wSeq))
}
if (withNames)
cat(" ", format(currName, width=wNames, justify="left"), sep="")
cat("\n")
}
## same structure as show for XStringSet
#' @rdname show-methods
#' @title Display Various KeBABS Objects
#' @aliases
#' show
#' show,BioVector-method
#'
#' @description
#' Display methods for BioVector, SpectrumKernel, MismatchKernel,
#' GappyPairKernel, MotifKernel, SymmetricPairKernel,
#' ExplicitRepresentationDense, ExplicitRepresentationSparse,
#' PredictionProfile, CrossValidationResult, ModelSelectionResult,
#' SVMInformation and KBModel objects
#'
#' @param object object of class BioVector, PredictionProfile,
#' SpectrumKernel, MismatchKernel, GappyPairKernel,
#' MotifKernel, SymmetricPairKernel, ExplicitRepresentation,
#' ExplicitRepresentationSparse, PredictionProfile, CrossValidationResult,
#' ModelSelectionResult, SVMInformation or KBModel to be displayed
#'
#' @details
#' \code{show} displays on overview of the selected object.
#' @return \code{show}: show returns an invisible \code{NULL}
#'
#' @examples
#'
#' ## load coiled coil data
#' data(CCoil)
#'
#' ## show amino acid sequences
#' ccseq
#'
#' ## define spectrum kernel object
#' specK1 <- spectrumKernel(k=1, normalized=FALSE)
#'
#' ## show kernel object
#' show(specK1)
#'
#' ## compute explicit representation for the first 5 sequences
#' ## in dense format
#' er <- getExRep(ccseq, specK1, sel=1:5, sparse=FALSE)
#'
#' ## show dense explicit representation
#' show(er)
#' @author Johannes Palme <kebabs@@bioinf.jku.at>
#' @references
#' \url{http://www.bioinf.jku.at/software/kebabs}\cr\cr
#' J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package
#' for kernel-based analysis of biological sequences.
#' \emph{Bioinformatics}, 31(15):2574-2576, 2015.
#' DOI: \href{http://dx.doi.org/10.1093/bioinformatics/btv176}{10.1093/bioinformatics/btv176}.
show.BioVector <- function(object)
{
wNames <- 20L
numRows <- 5L
numSeqs <- length(object)
withNames <- length(names(object)) > 0
wIndex <- nchar(as.character(numSeqs)) + 2
maxSeqLength <- max(nchar(object))
wWidth <- max(nchar(maxSeqLength), nchar("width"))
cat(" A", class(object), "instance of length", numSeqs, "\n")
if (numSeqs > 0)
{
wSeq <- getOption("width") - wIndex - wWidth - wNames - 3L
cat(format("width", width=wIndex + wWidth + 1, justify="right"),
format("seq", width=wSeq, justify="left"))
if (withNames)
cat(" ", format("names", width=wNames, justify="left"), sep="")
cat("\n")
if (length(object) <= (2 * numRows + 1))
{
for (index in 1:length(object))
{
show.BioVectorSeq(object, index, wIndex, wWidth, wSeq,
wNames, withNames)
}
}
else
{
for (index in 1:numRows)
{
show.BioVectorSeq(object, index, wIndex, wWidth, wSeq,
wNames, withNames)
}
cat(format("...", width=wIndex, justify="right"),
format("...", width=wWidth, justify="right"),
format("...", width=wSeq, justify="left"), "\n")
for (index in (length(object) - numRows + 1L):length(object))
{
show.BioVectorSeq(object, index, wIndex, wWidth, wSeq,
wNames, withNames)
}
}
}
}
setMethod("show", signature(object="BioVector"), show.BioVector)
show.PredictionProfile <- function(object)
{
maxCol <- 5
noOfDigits <- 9
colWidth <- noOfDigits + 3
noOfBlocks <- 1
blockSize <- nrow(object@profiles)
cat("An object of class ", dQuote(class(object)), "\n\n")
if (!is.null(object@sequences))
{
if (length(object@sequences) == 1)
cat("Sequence:\n\n")
else
cat("Sequences:\n\n")
show(object@sequences)
cat("\n")
}
show(object@kernel)
if (length(object@baselines) == 1)
cat("\nBaseline: ", object@baselines, "\n\n")
else if (length(object@baselines) <= 5)
cat("\nBaselines: ", object@baselines, "\n\n")
else
{
cat("\nBaselines: ", object@baselines[1:2], " ... ",
object@baselines[(length(object@baselines) - 1):
length(object@baselines)], "\n\n")
}
if (nrow(object@profiles) == 1)
cat("Profile:\n")
else
cat("Profiles:\n")
if (nrow(object@profiles) > 10)
{
noOfBlocks <- 2
blockSize <- 5
}
if (length(rownames(object@profiles)) > 0)
nwidth <- min(max(nchar(rownames(object@profiles))), 20)
else
nwidth <- ceiling(log10(nrow(object@profiles))) + 2
noPos <- ncol(object@profiles)
offset <- 0
if (nwidth > 17 && noPos > 4)
{
noOfDigits <- 8
colWidth <- noOfDigits + 3
}
for (i in 1:noOfBlocks)
{
if (i == 2)
offset <- nrow(object@profiles) - blockSize
if (i == 1)
{
if (ncol(object@profiles) > 4)
{
cat(format("Pos 1", width=nwidth+1+colWidth, justify="right"),
format("Pos 2", width=colWidth, justify="right"),
format(paste("Pos", noPos-1), width=5+colWidth,
justify="right"),
format(paste("Pos", noPos), width=colWidth,
justify="right"),
"\n")
}
else
{
cat(format(" ", width=nwidth))
for (j in 1:ncol(object@profiles))
cat(format(paste("Pos", j), width=colWidth+1,
justify="right"))
cat("\n")
}
}
for (j in (1 + offset):(blockSize + offset))
{
if (length(rownames(object@profiles)) > 0)
{
sampleName <- rownames(object@profiles)[j]
if (nchar(sampleName) > 20)
{
sampleName <- paste(substring(sampleName,1,17),
"...", sep="")
}
}
else
{
sampleName <- format(paste("[", j, "]", sep=""), nwidth,
justify="right")
}
if (ncol(object@profiles) > 4)
{
cat(formatC(sampleName, format="s", width=nwidth),
formatC(object@profiles[j,1], format="f",
digits=noOfDigits, width=colWidth),
formatC(object@profiles[j,2], format="f",
digits=noOfDigits, width=colWidth),
" ...",
formatC(object@profiles[j,noPos-1], format="f",
digits=noOfDigits, width=colWidth),
formatC(object@profiles[j,noPos], format="f",
digits=noOfDigits,
width=colWidth))
cat("\n")
}
else
{
cat(formatC(sampleName, format="s", width=nwidth))
for (k in 1:ncol(object@profiles))
{
cat(formatC(object@profiles[j,k], format="f",
digits=noOfDigits, width=colWidth+1))
}
cat("\n")
}
}
if (i == 1 && noOfBlocks > 1)
{
cat(formatC(paste(rep(".", nwidth - 2), sep="", collapse=""),
format="s", width=nwidth))
if (ncol(object@profiles) > 4)
{
cat(formatC(paste(rep(".", 6), sep="", collapse=""),
format="s", width=colWidth + 1),
formatC(paste(rep(".", 6), sep="", collapse=""),
format="s", width=colWidth),
" ",
formatC(paste(rep(".", 6), sep="", collapse=""),
format="s", width=colWidth),
formatC(paste(rep(".", 6), sep="", collapse=""),
format="s", width=colWidth))
}
else
{
for (j in 1:ncol(object@profiles))
{
cat(formatC(paste(rep(".", 6), sep="", collapse=""),
format="s", width=colWidth+1))
}
}
cat("\n")
}
}
cat("\n")
}
#' @rdname show-methods
#' @aliases
#' show,PredictionProfile-method
#'
setMethod("show", signature(object="PredictionProfile"),
show.PredictionProfile)
#' @rdname show-methods
#' @aliases
#' show,SpectrumKernel-method
#'
setMethod("show", signature(object="SpectrumKernel"),
function(object)
{
cat("Spectrum Kernel: ")
cat(paste("k=", object@k, sep=""))
if (object@r > 1)
cat(paste(", r=", object@r, sep=""))
if (object@annSpec == TRUE)
cat(paste(", annSpec=TRUE"))
if (length(object@distWeight) > 0)
{
dwString <- distWeightKernelToString(object@distWeight)
cat(", distWeight=", dwString, sep="")
}
if (object@normalized == FALSE)
cat(", normalized=FALSE")
if (object@exact == FALSE)
cat(", exact=FALSE")
if (object@ignoreLower == FALSE)
cat(", ignoreLower=FALSE")
if (object@presence == TRUE)
cat(", presence=TRUE")
if (object@revComplement == TRUE)
cat(", revComplement=TRUE")
cat("\n")
}
)
#' @rdname show-methods
#' @aliases
#' show,MismatchKernel-method
#'
setMethod("show", signature(object="MismatchKernel"),
function(object)
{
cat("Mismatch Kernel: ")
cat(paste("k=", object@k, sep=""))
cat(paste(", m=", object@m, sep=""))
if (object@r > 1)
cat(paste(", r=", object@r, sep=""))
if (object@normalized == FALSE)
cat(paste(", normalized=FALSE"))
if (object@exact == FALSE)
cat(", exact=FALSE")
if (object@ignoreLower == FALSE)
cat(", ignoreLower=FALSE")
if (object@presence == TRUE)
cat(", presence=TRUE")
cat("\n")
}
)
#' @rdname show-methods
#' @aliases
#' show,MotifKernel-method
#'
setMethod("show", signature(object="MotifKernel"),
function(object)
{
cat("Motif Kernel:\n\n")
cat("Motifs:\n")
obj <- kernelParameters(object)
if (length(obj$motifs) < 11)
{
for (i in 1:length(obj$motifs))
{
numChars <- nchar(obj$motifs[i])
if (numChars <= 70)
cat(obj$motifs[i], "\n")
else
{
cat(substr(obj$motifs[i],1,30), " .... ",
substr(obj$motifs[i], numChars-29,
numChars), "\n")
}
}
cat("\n")
}
else
{
for (i in 1:5)
{
numChars <- nchar(obj$motifs[i])
if (numChars <= 70)
cat(obj$motifs[i], "\n")
else
{
cat(substr(obj$motifs[i], 1, 30), " . . . ",
substr(obj$motifs[i], numChars - 29,
numChars), "\n")
}
}
cat(" . . . \n")
cat(" . . . \n")
cat(" . . . \n")
for (i in (length(obj$motifs) - 4):length(obj$motifs))
{
numChars <- nchar(obj$motifs[i])
if (numChars <= 70)
cat(obj$motifs[i], "\n")
else
{
cat(substr(obj$motifs[i], 1, 30), " . . . ",
substr(obj$motifs[i], numChars - 29,
numChars), "\n")
}
}
cat("\n")
}
cat("Kernel Parameters:\n")
suppressColon = TRUE
if (object@r > 1)
{
if (suppressColon)
suppressColon = FALSE
else
cat(", ")
cat(paste("r=", object@r, sep=""))
}
if (object@annSpec == TRUE)
{
if (suppressColon)
suppressColon = FALSE
else
cat(", ")
cat(paste("annSpec=TRUE"))
}
if (length(object@distWeight) > 0)
{
if (is.numeric(object@distWeight))
{
if (length(object@distWeight) == 1)
{
if (suppressColon)
suppressColon = FALSE
else
cat(", ")
cat(paste("distWeight=",
object@distWeight, sep=""))
}
else
{
if (suppressColon)
suppressColon = FALSE
else
cat(", ")
cat(paste("distWeight=",
paste("c(",paste(object@distWeight,
collapse=","),")",
sep=""), sep=""))
}
}
else
{
if (suppressColon)
suppressColon = FALSE
else
cat(", ")
cat("\ndistWeight=")
cat(format(object@distWeight))
}
}
if (object@normalized == FALSE)
{
if (suppressColon)
suppressColon = FALSE
else
cat(", ")
cat("normalized=FALSE")
}
if (object@exact == FALSE)
{
if (suppressColon)
suppressColon = FALSE
else
cat(", ")
cat("exact=FALSE")
}
if (object@ignoreLower == FALSE)
{
if (suppressColon)
suppressColon = FALSE
else
cat(", ")
cat("ignoreLower=FALSE")
}
if (object@presence == TRUE)
{
if (suppressColon)
suppressColon = FALSE
else
cat(", ")
cat("presence=TRUE")
}
cat("\n")
}
)
#' @rdname show-methods
#' @aliases
#' show,GappyPairKernel-method
#'
setMethod("show", signature(object="GappyPairKernel"),
function(object)
{
cat("gappy pair kernel: ")
cat(paste("k=", object@k, sep=""))
cat(paste(", m=", object@m, sep=""))
if (object@r > 1)
cat(paste(", r=", object@r, sep=""))
if (object@annSpec == TRUE)
cat(paste(", annSpec=TRUE"))
if (length(object@distWeight) > 0)
{
if (is.numeric(object@distWeight))
{
if (length(object@distWeight) == 1)
{
cat(paste(", distWeight=",
object@distWeight, sep=""))
}
else
{
cat(paste(", distWeight=",
paste("c(",paste(object@distWeight,
collapse=","),")",
sep=""), sep=""))
}
}
else
{
cat(", \ndistWeight=")
cat(format(object@distWeight))
}
}
if (object@normalized == FALSE)
cat(", normalized=FALSE")
if (object@exact == FALSE)
cat(", exact=FALSE")
if (object@ignoreLower == FALSE)
cat(", ignoreLower=FALSE")
if (object@presence == TRUE)
cat(", presence=TRUE")
if (object@revComplement == TRUE)
cat(", revComplement=TRUE")
cat("\n")
}
)
#' @rdname show-methods
#' @aliases
#' show,SymmetricPairKernel-method
#'
setMethod("show", signature(object="SymmetricPairKernel"),
function(object)
{
cat("Symmetric Pair Kernel: ")
cat("kernelType=", object@kernelType)
if (object@r > 1)
cat(paste(", r=", object@r, sep=""))
cat("\n Single Instance Kernel:\n ")
show(object@siKernel)
}
)
#' @rdname show-methods
#' @aliases
#' show,ExplicitRepresentationDense-method
#'
setMethod("show", signature(object="ExplicitRepresentationDense"),
function(object)
{
cat("Dense explicit representation of class ",
dQuote(class(object)), "\n\n")
cat(paste("Quadratic :", object@quadratic))
cat("\n")
if (length(object@usedKernel) > 0)
{
cat(paste("Used kernel : \n "))
cat(show(object@usedKernel))
cat("\n")
}
show(object@.Data)
cat("\n")
}
)
#' @rdname show-methods
#' @aliases
#' show,ExplicitRepresentationSparse-method
#'
setMethod("show", signature(object="ExplicitRepresentationSparse"),
function(object)
{
cat("Sparse explicit representation of class ",
dQuote(class(object)), "\n\n")
cat(paste("Quadratic :", object@quadratic))
cat("\n")
if (length(object@usedKernel) > 0)
{
cat(paste("Used kernel : \n "))
cat(show(object@usedKernel))
cat("\n")
}
show(as(object, "dgRMatrix"))
cat("\n")
}
)
#' @rdname show-methods
#' @aliases
#' show,CrossValidationResult-method
#'
setMethod("show", signature(object="CrossValidationResult"),
function(object)
{
if (object@outerCV)
{
cat("\nOuter cross validation result object of class ",
dQuote(class(object)), "\n\n")
cat(paste("nestedCross :", object@cross, "\n"))
cat(paste("noNestedCross :", object@noCross, "\n"))
}
else
{
cat("\nCross validation result object of class ",
dQuote(class(object)), "\n\n")
cat(paste("cross :", object@cross, "\n"))
cat(paste("noCross :", object@noCross, "\n\n"))
}
if (object@noCross > 1)
{
cat(paste("Mean CV error :",
format(mean(object@cvError), digits=8), "\n"))
if ("ACC" %in% object@perfParameters)
{
cat(paste("Mean accuracy :",
format(mean(object@ACC), digits=8), "\n"))
}
if ("BACC" %in% object@perfParameters)
{
cat(paste("Mean balanced accuracy:",
format(mean(object@BACC), digits=8), "\n"))
}
if ("MCC" %in% object@perfParameters)
{
cat(paste("Mean Matthews CC :",
format(mean(object@MCC), digits=8), "\n"))
}
if ("AUC" %in% object@perfParameters)
{
cat(paste("Area under the curve :",
format(mean(object@AUC), digits=8), "\n"))
}
cat("\n")
cat(paste("Run CV errors :\n"))
cat(paste(format(object@cvError, digits=8), collapse=", "))
cat("\n\n")
if ("ACC" %in% object@perfParameters)
{
cat(paste("Run accuracies :\n"))
cat(paste(format(object@ACC, digits=8), collapse=", "))
cat("\n\n")
}
if ("BACC" %in% object@perfParameters)
{
cat(paste("Run bal. accuracies :\n"))
cat(paste(format(object@BACC, digits=8), collapse=", "))
cat("\n\n")
}
if ("MCC" %in% object@perfParameters)
{
cat(paste("Run Matthews CC :\n"))
cat(paste(format(object@MCC, digits=8), collapse=", "))
cat("\n\n")
}
if ("AUC" %in% object@perfParameters)
{
cat(paste("Run AUCs :\n"))
cat(paste(format(object@AUC, digits=8), collapse=", "))
cat("\n\n")
}
}
else
{
cat(paste("CV error: :",
format(object@cvError, digits=8), collapse=", "), "\n")
if ("ACC" %in% object@perfParameters)
{
cat(paste("Accuracy: :",
format(object@ACC, digits=8), collapse=", "), "\n")
}
if ("BACC" %in% object@perfParameters)
{
cat(paste("Balanced accuracy: :",
format(object@BACC, digits=8), collapse=", "), "\n")
}
if ("MCC" %in% object@perfParameters)
{
cat(paste("Matthews CC :",
format(object@MCC, digits=8), collapse=", "), "\n")
}
if ("AUC" %in% object@perfParameters)
{
cat(paste("Area under the curve :",
format(mean(object@AUC), digits=8), "\n"))
}
cat("\n")
}
}
)
#' @rdname show-methods
#' @aliases
#' show,ModelSelectionResult-method
#'
setMethod("show", signature(object="ModelSelectionResult"),
function(object)
{
if (object@nestedCross > 0)
{
cat("\nModel selection result object of class ",
dQuote(class(object)), "\n\n")
cat(paste("cross :", object@cross, "\n"))
cat(paste("noCross :", object@noCross, "\n"))
cat(paste("nestedCross :", object@nestedCross, "\n"))
cat(paste("noNestedCross :", object@noNestedCross))
}
else
{
cat("\nGrid search result object of class ",
dQuote(class(object)), "\n\n")
cat(paste("cross :", object@cross, "\n"))
cat(paste("noCross :", object@noCross))
## the field smallestCVError always contains the best value
## as defined in the performance objective
if (object@perfObjective == "MCC")
{
cat(paste("\nBest MCC value :",
format(object@smallestCVError, digits=8)))
}
else if (object@perfObjective == "BACC")
{
cat(paste("\nBest bal. accuracy :",
format(object@smallestCVError, digits=8)))
}
else if (object@perfObjective == "AUC")
{
cat(paste("\nBest AUC :",
format(object@smallestCVError, digits=8)))
}
else
{
cat(paste("\nSmallest CV error :",
format(object@smallestCVError, digits=8)))
}
}
cat("\n\n")
if (length(object@groupBy) > 0)
{
cat(paste("groupBy:\n"))
if (length(object@groupBy) < 100)
cat(paste(object@groupBy, collapse=","))
else
{
cat(paste(object@groupBy[1:3], collapse=","), "...",
paste(object@groupBy[(length(object@groupBy)-2):
length(object@groupBy)],
collapse=","))
}
cat("\n\n")
}
if (length(object@gridRows) > 0)
{
cat("Grid Rows:\n")
namesGridRows <- names(object@gridRows)
maxNameLength <- max(nchar(namesGridRows))+3
for (i in 1:length(object@gridRows))
{
cat(paste(namesGridRows[i],
paste(rep(" ", 11-nchar(namesGridRows[i])),
collapse="")))
cat(seqKernelAsChar(object@gridRows[[i]]), "\n")
}
cat("\n")
}
if (!is.null(object@gridCols))
{
cat("Grid Columns:\n")
print(object@gridCols)
cat("\n")
}
if (object@nestedCross == 0)
{
if (object@perfObjective == "MCC")
{
cat("Grid MCC values:\n\n")
print(object@gridMCC)
cat ("\n")
}
else if (object@perfObjective == "BACC")
{
cat("Grid Balanced Accuracies:\n\n")
print(object@gridBACC)
cat ("\n")
}
else if (object@perfObjective == "AUC")
{
cat("Grid AUCs:\n\n")
print(object@gridAUC)
cat ("\n")
}
else
{
cat("Grid Errors:\n\n")
print(object@gridErrors)
cat ("\n")
}
}
if (length(object@gridRows) > 1)
{
cat("Selected Grid Row:\n")
if (is.list(object@selGridRow))
{
for (i in 1:length(object@selGridRow))
cat(i, "",seqKernelAsChar(object@selGridRow[[i]]), "\n")
cat("\n")
}
else
cat(seqKernelAsChar(object@selGridRow), "\n\n")
}
if (length(object@gridCols) > 0 && nrow(object@gridCols) > 1)
{
cat("Selected Grid Column:\n")
if (is.numeric(object@selGridCol))
cat(names(object@selGridCol), "=", object@selGridCol)
else
print(object@selGridCol)
}
cat("\n\n")
}
)
#' @rdname show-methods
#' @aliases
#' show,SVMInformation-method
#'
setMethod("show", signature(object="SVMInformation"),
function(object)
{
cat("\nSVM info object of class ", dQuote(class(object)), "\n\n")
if (length(object@reqKernel) > 0)
{
cat(paste("Kernel : "))
cat(show(object@reqKernel))
cat("\n")
}
cat(paste("Available Packages :", paste(object@availPackages,
collapse=", "), "\n"))
cat(paste("Package :", object@selPackage, "\n"))
cat(paste("Classifier :", object@selSVM, "\n"))
if (length(object@selSVMPar) > 0)
{
svmPars <- object@selSVMPar
cat(paste("Classifier Parameters : "))
cat(names(svmPars)[[1]], "=", svmPars[[1]])
if (length(svmPars) > 1)
{
for (i in 2:length(svmPars))
cat(", ", names(svmPars)[[i]], "=", svmPars[[i]])
}
cat("\n")
}
if (object@selPackage != object@reqPackage)
{
cat(paste("Requested Package :", object@reqPackage, "\n"))
cat(paste("Requested Classifier :", object@reqSVM, "\n"))
if (length(object@reqSVMPar) > 0)
{
svmPars <- object@reqSVMPar
cat(paste("Classifier Parameters : "))
cat(names(svmPars)[[1]], "=", svmPars[[1]])
if (length(svmPars) > 1)
{
for (i in 2:length(svmPars))
cat(", ", names(svmPars)[[i]], "=", svmPars[[i]])
}
cat("\n")
}
}
if (object@selExplicit)
{
cat(paste("Explicit Kernel :",
object@svmInfo@explicitKernel, "\n"))
if (object@svmInfo@reqExplicit != "yes")
{
cat(paste("Requested explicit :",
object@svmInfo@reqExplicit, "\n"))
}
}
cat("\n")
}
)
#' @rdname show-methods
#' @aliases
#' show,KBModel-method
#'
setMethod("show", signature(object="KBModel"),
function(object)
{
cat("\nKEBABS result object of class \"KBModel\"","\n\n")
cat(paste("Number of samples :", object@numSequences, "\n"))
if (length(object@svmInfo@reqKernel) > 0)
{
cat(paste("Kernel : "))
cat(show(object@svmInfo@reqKernel))
cat("\n")
}
cat(paste("Available Packages :",
paste(object@svmInfo@availPackages, collapse=", "), "\n"))
if (length(object@svmInfo@selPackage) > 1)
{
cat(paste("Packages :",
paste(object@svmInfo@selPackage, collapse=", "), "\n"))
}
else
{
cat(paste("Package :", object@svmInfo@selPackage,
"\n"))
}
if (length(object@svmInfo@selSVM) > 1)
{
cat(paste("SVMs :",
paste(object@svmInfo@selSVM, collapse=", "), "\n"))
}
else
{
cat(paste("SVM :", object@svmInfo@selSVM,
"\n"))
}
if (length(object@svmInfo@selSVMPar) > 0)
{
svmPars <- object@svmInfo@selSVMPar
cat(paste("Classifier Parameters : "))
cat(names(svmPars)[[1]], "=", svmPars[[1]])
if (length(svmPars) > 1)
{
for (i in 2:length(svmPars))
cat(", ", names(svmPars)[[i]], "=", svmPars[[i]])
}
cat("\n")
}
if (!(all(object@svmInfo@selPackage == object@svmInfo@reqPackage)))
{
if (length(object@svmInfo@reqPackage) > 1)
{
cat(paste("Requested Packages :",
paste(object@svmInfo@reqPackage, collapse=", "), "\n"))
}
else
{
cat(paste("Requested Package :",
object@svmInfo@reqPackage, "\n"))
}
if (length(object@svmInfo@reqSVM) > 1)
{
cat(paste("Requested SVMs :",
paste(object@svmInfo@reqSVM, collapse=", "), "\n"))
}
else
{
cat(paste("Requested SVM :",
object@svmInfo@reqSVM, "\n"))
}
if (length(object@svmInfo@reqSVMPar) > 0)
{
svmPars <- object@svmInfo@reqSVMPar
cat(paste("Classifier Parameters : "))
cat(names(svmPars)[[1]], "=", svmPars[[1]])
if (length(svmPars) > 1)
{
for (i in 2:length(svmPars))
cat(", ", names(svmPars)[[i]], "=", svmPars[[i]])
}
cat("\n")
}
}
if (object@svmInfo@selExplicit)
{
cat(paste("Explicit Kernel :",
object@svmInfo@explicitKernel, "\n"))
if (object@svmInfo@reqExplicit != "yes")
{
cat(paste("Requested explicit :",
object@svmInfo@reqExplicit, "\n"))
}
}
if (object@svmInfo@probModel)
{
if (!is.na(object@sigma))
cat(paste("Laplace distr. width:", object@sigma, "\n"))
}
cat("\n")
cat("Call:\n")
cat(paste(object@call, "\n"))
cat("\n")
cat("Classifier specific model :\n\n")
cat(show(object@svmModel))
cat("\n")
}
)
#' @rdname show-methods
#' @aliases
#' show,ROCData-method
#'
setMethod("show", signature(object="ROCData"),
function(object)
{
cat("ROC Data of class ",
dQuote(class(object)), "\n\n")
cat(paste("AUC:", round(object@AUC, 3)))
cat("\n\n")
}
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.