Nothing
##
## Isobar properties.R file
## for automatic report generation
##
## It is standard R code and parsed using sys.source
#####################################################################
## General properties
## Report type: Either 'protein' or 'peptide'
# report.level="peptide"
report.level="protein"
#attr(report.level,"allowed.values") <- c("protein","peptide")
## Isobaric tagging type. Use one of the following:
# type='iTRAQ4plexSpectra'
# type='iTRAQ8plexSpectra'
# type='TMT2plexSpectra'
# type='TMT6plexSpectra'
type=NULL
#attr(type,"allowed.values") <- IBSpectraTypes()
isotope.impurities=NULL
correct.isotope.impurities=TRUE
## Name of project, by default the name of working directory
## Will be title and author of the analysis reports.
name=basename(getwd())
author=paste0("isobar R package v",packageDescription("isobar")$Version)
## specifes the IBSpectra file or object
## - can be a data.frame (e.g. ibspectra=as.data.frame(ibspiked_set1) )
## - if it is a character string, it is assumed to be a file
## - if it ends on .rda, then it is assumed to be a R data object
## - if it does not exists, then it is may generated based on
## the peaklist and identifications properties
ibspectra=paste(name,"ibspectra.csv",sep=".")
## When replicates or 'samples belonging together' are analyzed, a
## ProteinGroup object based on all data should be constructed
## beforehand. This then acts as a template and a subset is used.
protein.group.template=NULL
## Via database or internet connection, informations on proteins (such
## as gene names and length) can be gathered. protein.info.f defines
## the function which takes a ProteinGroup object as argument
protein.info.f=getProteinInfoFromTheInternet
## Where should cached files be saved? Will be created if it does not
## exist
# cachedir="."
cachedir="cache"
## Regenerate cache files? By default, chache files are used.
regen=FALSE
## An ibspectra object can be generated from peaklists and
## identifications.
## peaklist files for quantitation, by default all mgf file in
## directory
peaklist=list.files(pattern="*\\.mgf$")
## id files, by default all id.csv files in directory
identifications=list.files(pattern="*\\.id.csv$")
## mapping files, for data quantified and identified with different but
## correspoding spectra. For example corresponding HCD-CID files.
## masses and intensities which are outside of the 'true' tag mass
## +/- fragment.precision/2 are discarded
fragment.precision=0.01
## filter mass outliers
fragment.outlier.prob=0.001
## Additional arguments of readIBSpectra can be set here
## decode.titles should be set to TRUE for Mascot search results
## as Mascot encodes the spectrum title (e.g. space -> %20)
readIBSpectra.args = list(
mapping.file=NULL,
decode.titles=FALSE
)
#####################################################################
## Quantification properties
normalize=TRUE
# if defined, normalize.factors will be used for normalization
normalize.factors=NULL
normalize.channels=NULL
normalize.use.protein=NULL
normalize.exclude.protein=NULL
normalize.function=median
normalize.na.rm=FALSE
peptide.specificity=REPORTERSPECIFIC
use.na=FALSE
## the parameter noise.model can be either a NoiseModel object or a file name
data(noise.model.hcd)
noise.model=noise.model.hcd
## If it is a file name, a noise model is estimated as non one-to-one
## and saved into the file. otherwise, the noise model is loaded from
## the file
# noise.model="noise.model.rda"
## Define channels for creation of a noise model, ideally a set of
## channels which are technical replicates.
noise.model.channels=NULL
## If noise.model.is.technicalreplicates is FALSE, the intensities
## are normalized for protein means, creating artifical technical
## replicates. For this procedure, only proteins with more than
## noise.model.minspectra are considered.
noise.model.is.technicalreplicates=FALSE
noise.model.minspectra=50
## class labels. Must by of type character and of same length as
## number of channels I. e. 4 for iTRAQ 4plex, 6 for TMT 6plex Example
## for iTRAQ 4plex:
## Class definitions of the isobaric tag channels.
## A character vector with the same length as channels
## (e.g. 4 for iTRAQ 4plex, 6 for TMT 6plex)
## Example for iTRAQ 4plex:
# class.labels=as.character(c(1,0,0,0))
# class.labels=c("Treatment","Treatment","Control","Control")
## Also names are possible - these serves as description in the report
## and less space is used in the rows
# class.labels=c("Treatment"="T","Treatment"="T","Control"="C","Control"="C")
class.labels=NULL
## The following parameters define which ratios are calculated.
## summarize ratios with equal class labels, set to TRUE when replicates are used
summarize=FALSE
## combn.method defines which ratios are calculated - versus a channel or a class,
## all the ratios within or across classes, or all possible combinatioins.
## When summarize=TRUE is set, use "interclass", "versus.class", or "intraclass"
# combn.method="global"
# combn.method="versus.class"
# combn.method="intraclass"
# combn.method="interclass"
combn.method="versus.channel"
vs.class=NULL
cmbn=NULL
## Arguments given to 'proteinRatios' function. See ?proteinRatios
ratios.opts = list(
sign.level.sample=0.05,
sign.level.rat=0.05,
groupspecific.if.same.ac=TRUE)
quant.w.grouppeptides=c()
min.detect=NULL
preselected=c()
### Biological Variability Ratio Distribution options
## ratiodistr can be set to a file or a 'Distribution object. ' If
## NULL, or the specified file is not existent, the biological
## variability of ratios is estimated on the sample at hand and
## written to cachedir/ratiodistr.rda or the specified file.
ratiodistr=NULL
## Ideally, when the biological variability is estimated for the
## sample at hand, a biological replicate is present (/ie/ same class
## defined in class labels). Classes can also be assigned just for
## estimation of the ratio distribution, /eg/ to choose biologically
## very similar samples as pseudo replicates.
ratiodistr.class.labels=NULL
## Function for fitting. Available: fitCauchy, fitTlsd
ratiodistr.fitting.f=fitCauchy
## Use symetrical ratios - i.e. for every ratio r add a ratio -r
## prior to fitting of a distribution
ratiodistr.symmetry=TRUE
## If defined, use z-score instead of ratio distribution
# zscore.threshold=2.5
zscore.threshold=NULL
####################################################################
## PTM properties
## PhosphoSitePlus dataset which can be used to annotate known
## modification sites. Download site:
## http://www.phosphosite.org/staticDownloads.do
phosphosite.dataset <- NULL
## Modification to track. Use 'PHOS' for phosphorylation.
# ptm <- c('ACET','METH','UBI','SUMO', 'PHOS')
ptm <- NULL
## file name of rda or data.frame with known modification sites
## gathered with ptm.info.f. defaults to 'cachedir/ptm.info.rda'
ptm.info <- NULL
## Function to get PTM modification sites from public datasets
# ptm.info.f <- getPtmInfoFromNextprot
# ptm.info.f <- function(...)
# getPtmInfoFromPhosphoSitePlus(...,modification="PHOS")
# ptm.info.f <- function(...)
# getPtmInfoFromPhosphoSitePlus(...,modification=ptm)
ptm.info.f <- getPtmInfoFromNextprot
## A protein quantification data.frame (generated with
## 'proteinRatios'). The ratio and variance are used to correct the
## observed modified peptide ratios Needs to have the experimental
## setup as the modified peptide experiment
correct.peptide.ratios.with <- NULL
## Protein groups to use with correct.peptide.ratios()
correct.peptide.ratios.with_protein.group <- NULL
## The correlation between peptide and protein ratios defines the
## covariance
## Var(ratio m) = Var(ratio mp) + Var(ratio p)
## + 2 * Cov(ratio mp, ratio p),
## Cov(ratio mp, ratio p) = 2 * cor * Sd(ratio mp) * Sd(ratio p),
## with m = modifcation, mp = modified peptide, p = protein
peptide.protein.correlation <- 0
## quantification table whose columns are attached to the XLS
## quantification table
compare.to.quant <- NULL
#####################################################################
## Report properties
write.qc.report=TRUE
write.report=TRUE
write.xls.report=TRUE
## Use name for report, ie NAME.quant.xlsx instead of
## isobar-analysis.xlsx
use.name.for.report=TRUE
## PDF Analysis report sections: Significant proteins and protein
## details
show.significant.proteins=FALSE
show.protein.details=TRUE
### QC REPORT OPTIONS ###
#qc.maplot.pairs=FALSE # plot one MA plot per tag (versus all others)
qc.maplot.pairs=TRUE # plot MA plot of each tag versus each tag
### XLS REPORT OPTIONS ###
## Spreadsheet format: Either 'xlsx' or 'xls'
# spreadsheet.format="xlsx"
spreadsheet.format="xlsx"
## XLS report format 'wide' or 'long '.
## 'wide' format outputs ratios in separate columns of the same record
## (i.e. one line per protein)
## 'long' format outputs ratios in separate records (i.e. one line per
## ratio)
# xls.report.format="wide"
xls.report.format="long"
## XLS report columns in quantification tab
## possible values: ratio, is.significant, CI95.lower, CI95.upper,
## ratio.minus.sd, ratio.plus.sd,
## p.value.ratio, p.value.sample, n.na1, n.na2,
## log10.ratio, log10.variance,
## log2.ratio, log2.variance
## only for summarize=TRUE: n.pos, n.neg
xls.report.columns <- c("ratio","is.significant","ratio.minus.sd",
"ratio.plus.sd","p.value.ratio","p.value.sample",
"log10.ratio","log10.variance")
## Perl command to be used for Excel report generation
# perl.cmd = "C:/Strawberry/perl/bin/perl.exe"
# perl.cmd = "C:/Perl/bin/perl.exe"
# perl.cmd = "perl5"
perl.cmd = "perl"
#####################################################################
## Etc
sum.intensities=FALSE
datbase="Uniprot"
scratch=list()
##
# compile LaTeX reports into PDF files
compile=TRUE
# zip final report files into archive
zip=FALSE
# warning level (see 'warn' in ?options)
warning.level=1
###########################################################
## Novel options
shrink.mean=TRUE
use.t.stat=TRUE
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.