Description Usage Arguments Value Examples
Function takes a read counts matrix of entire gene set and a matrix of surrogate variables estimated by IA-SVA as input, identifies marker genes highly correlated with each surrogate variable and returns a read counts matrix of the markers.
1 2 | find_markers(Y, iasva.sv, method = "BH", sig.cutoff = 0.05,
rsq.cutoff = 0.3, verbose = FALSE)
|
Y |
A SummarizedExperiment class containing read counts where rows represent genes and columns represent samples. |
iasva.sv |
matrix of estimated surrogate variables, one column for each surrogate variable. |
method |
multiple testing adjustment method, default = "BH". |
sig.cutoff |
significance cutoff. |
rsq.cutoff |
R squared cutoff. |
verbose |
If verbose = TRUE, the function outputs detailed messages. |
marker.counts read counts matrix of markers, one column for each cell.
1 2 3 4 5 6 7 8 9 10 11 12 | counts_file <- system.file("extdata", "iasva_counts_test.Rds",
package = "iasva")
counts <- readRDS(counts_file)
anns_file <- system.file("extdata", "iasva_anns_test.Rds",
package = "iasva")
anns <- readRDS(anns_file)
Geo_Lib_Size <- colSums(log(counts + 1))
Patient_ID <- anns$Patient_ID
mod <- model.matrix(~Patient_ID + Geo_Lib_Size)
summ_exp <- SummarizedExperiment::SummarizedExperiment(assays = counts)
iasva.res <- iasva(summ_exp, mod[, -1], num.sv = 5, permute = FALSE)
markers <- find_markers(summ_exp, iasva.res$sv)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.