Nothing
gen_thr_vec <- function(thresholds) {
v <- rep(0, length(thresholds))
names(v) <- paste0("thr", thresholds)
v
}
## conttruth = true logFC
## estvals = estimated logFC
## svals = s-values, to rank and cutoff based on
get_curve_cont <- function(conttruth, estvals, svals, aspc) {
if (aspc == "fsrnbr") {
## Get total number of features with positive, negative and zero true sign
possign <- length(which(sign(conttruth) == 1))
negsign <- length(which(sign(conttruth) == -1))
zerosign <- length(which(sign(conttruth) == 0))
## subset to features with existing s-value
kg <- intersect(names(conttruth), names(svals[!is.na(svals)]))
svals <- sort(svals[match(kg, names(svals))])
conttruth <- conttruth[match(names(svals), names(conttruth))]
estvals <- estvals[match(names(svals), names(estvals))]
if (any(sign(conttruth) != 0)) {
## Make sure that genes without logFC estimate are counted as having
## mismatching signs
if (any(is.na(estvals))) {
estvals[is.na(estvals)] <- -conttruth[is.na(estvals)]
}
## Calculate the FSR at each s-value threshold
unique_svals <- sort(unique(svals))
fsrnbr <- as.data.frame(t(sapply(unique_svals, function(s) {
ids <- which(svals <= s)
nbr <- length(ids)
fs <- length(which(abs(sign(conttruth[ids]) - sign(estvals[ids])) == 2))
fsr <- fs/nbr
ts <- length(which(sign(conttruth[ids]) == sign(estvals[ids])))
tot_called <- length(which(!is.na(svals)))
c(SVAL_CUTOFF = s, NBR = nbr, FS = fs, FSR = fsr, TS = ts,
TOT_CALLED = tot_called, POSSIGN = possign, NEGSIGN = negsign,
ZEROSIGN = zerosign)
})))
return(fsrnbr)
} else {
return(NULL)
}
}
}
#' @importFrom ROCR prediction performance
get_curve <- function(bintruth, vals, revr, aspc, rank_by_abs) {
kg <- intersect(names(bintruth), names(vals[!is.na(vals)]))
if (any(bintruth[match(kg, names(bintruth))] == 0) &
any(bintruth[match(kg, names(bintruth))] == 1)) {
if (aspc %in% c("roc", "fdrtpr")) {
tpcorr <- length(which(bintruth == 1)) /
length(intersect(names(bintruth)[which(bintruth == 1)], kg))
fpcorr <- length(which(bintruth == 0)) /
length(intersect(names(bintruth)[which(bintruth == 0)], kg))
}
if (isTRUE(rank_by_abs))
vals <- abs(vals)
if (isTRUE(revr))
inpvals <- 1 - vals[match(kg, names(vals))]
else
inpvals <- vals[match(kg, names(vals))]
preds <- ROCR::prediction(predictions = inpvals,
labels = bintruth[match(kg, names(bintruth))],
label.ordering = c(0, 1))
if (aspc == "roc")
mes <- ROCR::performance(preds, measure = "tpr", x.measure = "fpr")
else if (aspc == "fpc")
mes <- ROCR::performance(preds, measure = "fpr", x.measure = "rpp")
else if (aspc == "fdrtpr") {
mes <- ROCR::performance(preds, measure = "tpr", x.measure = "ppv")
mes2 <- ROCR::performance(preds, measure = "fpr", x.measure = "rpp")
stopifnot(all(unlist(mes@alpha.values) == unlist(mes2@alpha.values)))
}
if (isTRUE(revr))
alphas <- 1 - unlist(mes@alpha.values)
else
alphas <- unlist(mes@alpha.values)
if (aspc == "roc") {
roc = cbind(FPR = unlist(mes@x.values) / fpcorr,
TPR = unlist(mes@y.values) / tpcorr,
ROC_CUTOFF = alphas)
return(roc)
} else if (aspc == "fpc") {
fpc = cbind(topN = unlist(mes@x.values) * length(kg),
FP = unlist(mes@y.values) *
length(which(bintruth[match(kg, names(bintruth))] == 0)),
FPC_CUTOFF = alphas)
return(fpc)
} else if (aspc == "fdrtpr") {
fdrtpr = cbind(FDR = 1 - unlist(mes@x.values),
TPR = unlist(mes@y.values) / tpcorr,
NBR = round(unlist(mes2@x.values) * length(kg)),
CUTOFF = alphas,
FP = unlist(mes2@y.values) *
length(which(bintruth[match(kg, names(bintruth))] == 0)),
TOT_CALLED = length(kg))
fdrtpr = cbind(fdrtpr,
TP = fdrtpr[, "TPR"] * length(which(bintruth == 1)))
fdrtpr = cbind(fdrtpr, FN = length(
which(bintruth[match(kg, names(bintruth))] == 1)) - fdrtpr[, "TP"])
fdrtpr = cbind(fdrtpr, TN = fdrtpr[, "TOT_CALLED"] - fdrtpr[, "TP"] -
fdrtpr[, "FN"] - fdrtpr[, "FP"])
fdrtpr = cbind(fdrtpr, DIFF = length(which(bintruth == 1)))
fdrtpr = cbind(fdrtpr, NONDIFF = length(which(bintruth == 0)))
return(fdrtpr)
}
} else {
return(NULL)
}
}
#' Calculate performance measures
#'
#' Calculate performance measures from a given collection of p-values, adjusted
#' p-values and scores provided in a \code{COBRAData} object.
#'
#' Depending on the collection of observations that are available for a given
#' method, the appropriate one will be chosen for each performance measure. For
#' \code{fpr}, \code{tpr}, \code{fdrtpr}, \code{fdrnbr} and \code{overlap}
#' aspects, results will only be calculated for methods where adjusted p-values
#' are included in the \code{COBRAData} object, since these calculations make
#' use of specific adjusted p-value cutoffs. For \code{fdrtprcurve} and
#' \code{fdrnbrcurve} aspects, the \code{score} observations will be
#' preferentially used, given that they are monotonically associated with the
#' adjusted p-values (if provided). If the \code{score} is not provided, the
#' nominal p-values will be used, given that they are monotonically associated
#' with the adjusted p-values (if provided). In other cases, the adjusted
#' p-values will be used also for these aspects. For \code{roc} and \code{fpc},
#' the \code{score} observations will be used if they are provided, otherwise
#' p-values and, as a last instance, adjusted p-values. Finally, for the
#' \code{fsrnbr}, \code{corr}, \code{scatter} and \code{deviation} aspects, the
#' \code{score} observations will be used if they are provided, otherwise no
#' results will be calculated.
#'
#' @param cobradata A \code{COBRAData} object.
#' @param binary_truth A character string giving the name of the column of
#' truth(cobradata) that contains the binary truth (true assignment of
#' variables into two classes, represented by 0/1).
#' @param cont_truth A character string giving the name of the column of
#' truth(cobradata) that contains the continuous truth (a continuous value
#' that the observations can be compared to).
#' @param aspects A character vector giving the types of performance measures to
#' calculate. Must be a subset of c("fdrtpr", "fdrtprcurve", "fdrnbr",
#' "fdrnbrcurve", "tpr", "fpr", "roc", "fpc", "overlap", "corr", "scatter",
#' "deviation", "fsrnbr", "fsrnbrcurve").
#' @param thrs A numeric vector of adjusted p-value thresholds for which to
#' calculate the performance measures. Affects "fdrtpr", "fdrnbr", "tpr" and
#' "fpr".
#' @param svalthrs A numeric vector of s-value thresholds for which to calculate
#' the FSR. Affects "fsrnbr".
#' @param splv A character string giving the name of the column of
#' truth(cobradata) that will be used to stratify the results. The default
#' value is "none", indicating no stratification.
#' @param maxsplit A numeric value giving the maximal number of categories to
#' keep in the stratification. The largest categories containing both positive
#' and negative features will be retained. By setting this argument to `Inf`
#' or `NA_integer_`, all categories (as well as the order of categories) will
#' be retained.
#' @param onlyshared A logical, indicating whether to only consider features for
#' which both the true assignment and a result (p-value, adjusted p-value or
#' score) is given. If FALSE, all features contained in the truth table are
#' used.
#' @param thr_venn A numeric value giving the adjusted p-value threshold to use
#' to create Venn diagrams (if \code{type_venn} is "adjp").
#' @param type_venn Either "adjp" or "rank", indicating whether Venn diagrams
#' should be constructed based on features with adjusted p-values below a
#' certain threshold, or based on the same number of top-ranked features by
#' different methods.
#' @param topn_venn A numeric value giving the number of top-ranked features to
#' compare between methods (if \code{type_venn} is "rank").
#' @param rank_by_abs Whether to take the absolute value of the score before
#' using it to rank the variables for ROC, FPC, FDR/NBR and FDR/TPR curves.
#' @param prefer_pval Whether to preferentially rank variables by p-values or
#' adjusted p-values rather than score for ROC and FPC calculations. From
#' version 1.5.5, this is the default behaviour. To obtain the behaviour of
#' previous versions, set to \code{FALSE}.
#'
#' @return A \code{COBRAPerformance} object
#'
#' @export
#' @author Charlotte Soneson
#' @examples
#' data(cobradata_example)
#' cobraperf <- calculate_performance(cobradata_example,
#' binary_truth = "status",
#' aspects = c("fdrtpr", "fdrtprcurve",
#' "tpr", "roc"),
#' thrs = c(0.01, 0.05, 0.1), splv = "none")
calculate_performance <- function(cobradata, binary_truth = NULL,
cont_truth = NULL,
aspects = c("fdrtpr", "fdrtprcurve", "fdrnbr",
"fdrnbrcurve", "tpr", "fpr",
"roc", "fpc", "overlap",
"corr", "scatter", "deviation",
"fsrnbr", "fsrnbrcurve"),
thrs = c(0.01, 0.05, 0.1),
svalthrs = c(0.01, 0.05, 0.1), splv = "none",
maxsplit = 3, onlyshared = FALSE,
thr_venn = 0.05, type_venn = "adjp",
topn_venn = 100, rank_by_abs = TRUE,
prefer_pval = TRUE) {
## Get all methods represented in the test result object
## (with at least one type of result)
all_methods <- unique(c(colnames(pval(cobradata)), colnames(padj(cobradata)),
colnames(sval(cobradata)),
colnames(score(cobradata))))
## If the binary_truth column is logical, convert to 0/1 values
if (is.logical(truth(cobradata)[, binary_truth])) {
message("binary_truth column is logical, converting to numeric (0/1)")
truth(cobradata)[, binary_truth] <- as.numeric(truth(cobradata)[, binary_truth])
}
## ------------------- NBR, TP, FP etc (always calculated) ------------ ##
if (any(c("tpr", "fdr", "fdrtpr", "fpr", "fdrnbr") %in% aspects) &&
!is.null(binary_truth)) {
outNBR <- outFP <- outTP <- outFN <- outTN <- outTOT_CALLED <-
outDS <- outNONDS <- list()
keeplevels <- c()
for (i in all_methods) {
inpcol <- select_measure(cobradata, i, asp = "fpr",
prefer_pval = prefer_pval)
if (!is.null(inpcol)) {
tmp <- slot(cobradata, inpcol)[i]
allg <- get_keepfeatures(truth = truth(cobradata),
df = tmp, method = i,
colm = binary_truth, onlyshared = onlyshared)
tmp <- tmp[match(allg, rownames(tmp)), , drop = FALSE]
truth <- truth(cobradata)[match(allg, rownames(truth(cobradata))), ,
drop = FALSE]
kltmp <- get_keeplevels(truth = truth, splv = splv,
binary_truth = binary_truth,
maxsplit = maxsplit)
keeplevels <- union(keeplevels, kltmp)
if (inpcol == "padj") {
NBR <- list()
nbr <- gen_thr_vec(thrs)
for (thr in thrs) {
nbr[paste0("thr", thr)] <- length(which(tmp[i] <= thr))
}
NBR[[paste0(i, "_overall", "__", inpcol)]] <-
list(basemethod = i, meas_type = inpcol, nbr = nbr)
if (splv != "none") {
for (j in kltmp) {
nbr <- gen_thr_vec(thrs)
for (thr in thrs) {
g <- rownames(truth)[which(truth[[splv]] == j)]
nbr[paste0("thr", thr)] <-
length(intersect(g, rownames(tmp)[which(tmp[i] <= thr)]))
}
NBR[[paste0(i, "_", splv, ":", j, "__",
inpcol)]] <- list(basemethod = i,
meas_type = inpcol, nbr = nbr)
}
}
FP <- TP <- FN <- TN <- TOT_CALLED <- DS <- NONDS <- list()
fp <- tp <- fn <- tn <- tot_called <- ds <- nonds <- gen_thr_vec(thrs)
for (thr in thrs) {
signif <- rownames(tmp)[which(tmp[i] <= thr)]
nonsignif <- rownames(tmp)[which(tmp[i] > thr)]
fp[paste0("thr", thr)] <-
length(intersect(
signif, rownames(truth)[which(truth[, binary_truth] == 0)]))
tp[paste0("thr", thr)] <-
length(intersect(
signif, rownames(truth)[which(truth[, binary_truth] == 1)]))
fn[paste0("thr", thr)] <-
length(intersect(
nonsignif, rownames(truth)[which(truth[, binary_truth] == 1)]))
tn[paste0("thr", thr)] <-
length(intersect(
nonsignif, rownames(truth)[which(truth[, binary_truth] == 0)]))
tot_called[paste0("thr", thr)] <-
length(intersect(rownames(tmp)[which(!is.na(tmp[i]))],
rownames(truth)))
ds[paste0("thr", thr)] <- length(which(truth[, binary_truth] == 1))
nonds[paste0("thr", thr)] <-
length(which(truth[, binary_truth] == 0))
}
idx <- paste0(i, "_overall", "__", inpcol)
FP[[idx]] <- list(basemethod = i, meas_type = inpcol, fp = fp)
TP[[idx]] <- list(basemethod = i, meas_type = inpcol, tp = tp)
FN[[idx]] <- list(basemethod = i, meas_type = inpcol, fn = fn)
TN[[idx]] <- list(basemethod = i, meas_type = inpcol, tn = tn)
TOT_CALLED[[idx]] <- list(basemethod = i, meas_type = inpcol,
tot_called = tot_called)
DS[[idx]] <- list(basemethod = i, meas_type = inpcol, ds = ds)
NONDS[[idx]] <- list(basemethod = i,
meas_type = inpcol, nonds = nonds)
if (splv != "none" & any(truth[, binary_truth] == 0)) {
for (j in kltmp) {
fp <- tp <- fn <- tn <- tot_called <- ds <- nonds <-
gen_thr_vec(thrs)
for (thr in thrs) {
signif <- rownames(tmp)[which(tmp[i] <= thr)]
nonsignif <- rownames(tmp)[which(tmp[i] > thr)]
g <- rownames(truth)[which(truth[[splv]] == j)]
gt <- intersect(
g, rownames(truth)[which(truth[, binary_truth] == 0)])
gtt <- intersect(
g, rownames(truth)[which(truth[, binary_truth] == 1)])
gf <- intersect(g, signif)
gnf <- intersect(g, nonsignif)
fp[paste0("thr", thr)] <- length(intersect(gf, gt))
tp[paste0("thr", thr)] <- length(intersect(gf, gtt))
fn[paste0("thr", thr)] <- length(intersect(gnf, gtt))
tn[paste0("thr", thr)] <- length(intersect(gnf, gt))
tot_called[paste0("thr", thr)] <-
length(intersect(rownames(tmp)[which(!is.na(tmp[i]))], g))
ds[paste0("thr", thr)] <- length(gtt)
nonds[paste0("thr", thr)] <- length(gt)
}
idx <- paste0(i, "_", splv, ":", j, "__", inpcol)
FP[[idx]] <- list(basemethod = i, meas_type = inpcol, fp = fp)
TP[[idx]] <- list(basemethod = i, meas_type = inpcol, tp = tp)
FN[[idx]] <- list(basemethod = i, meas_type = inpcol, fn = fn)
TN[[idx]] <- list(basemethod = i, meas_type = inpcol, tn = tn)
TOT_CALLED[[idx]] <- list(basemethod = i, meas_type = inpcol,
tot_called = tot_called)
DS[[idx]] <- list(basemethod = i, meas_type = inpcol, ds = ds)
NONDS[[idx]] <- list(basemethod = i, meas_type = inpcol,
nonds = nonds)
}
}
outNBR <- c(outNBR, NBR)
outFP <- c(outFP, FP)
outTP <- c(outTP, TP)
outFN <- c(outFN, FN)
outTN <- c(outTN, TN)
outTOT_CALLED <- c(outTOT_CALLED, TOT_CALLED)
outDS <- c(outDS, DS)
outNONDS <- c(outNONDS, NONDS)
}
} else {
message("column ", i, " is being ignored for NBRS calculations")
}
}
if (any(sapply(lapply(outNBR, function(w) w$nbr), length) > 0)) {
nbrs <- t(do.call(rbind, lapply(outNBR, function(w) w$nbr)))
vn <- sapply(outNBR, function(w) w$basemethod)
tps <- t(do.call(rbind, lapply(outTP, function(w) w$tp)))
vtp <- sapply(outTP, function(w) w$basemethod)
fps <- t(do.call(rbind, lapply(outFP, function(w) w$fp)))
vfp <- sapply(outFP, function(w) w$basemethod)
tns <- t(do.call(rbind, lapply(outTN, function(w) w$tn)))
vtn <- sapply(outTN, function(w) w$basemethod)
fns <- t(do.call(rbind, lapply(outFN, function(w) w$fn)))
vfn <- sapply(outFN, function(w) w$basemethod)
tcs <- t(do.call(rbind, lapply(outTOT_CALLED, function(w) w$tot_called)))
vtc <- sapply(outTOT_CALLED, function(w) w$basemethod)
dss <- t(do.call(rbind, lapply(outDS, function(w) w$ds)))
vds <- sapply(outDS, function(w) w$basemethod)
nds <- t(do.call(rbind, lapply(outNONDS, function(w) w$nonds)))
vnds <- sapply(outNONDS, function(w) w$basemethod)
nbrs <- extend_resulttable(nbrs, splv, keeplevels, "NBR",
vn, domelt = TRUE)
tps <- extend_resulttable(tps, splv, keeplevels, "TP",
vtp, domelt = TRUE)
fps <- extend_resulttable(fps, splv, keeplevels, "FP",
vfp, domelt = TRUE)
fns <- extend_resulttable(fns, splv, keeplevels, "FN",
vfn, domelt = TRUE)
tns <- extend_resulttable(tns, splv, keeplevels, "TN",
vtn, domelt = TRUE)
tcs <- extend_resulttable(tcs, splv, keeplevels, "TOT_CALLED",
vtc, domelt = TRUE)
dss <- extend_resulttable(dss, splv, keeplevels, "DIFF",
vds, domelt = TRUE)
nds <- extend_resulttable(nds, splv, keeplevels, "NONDIFF",
vnds, domelt = TRUE)
all_nbr <- Reduce(function(...) merge(..., all = TRUE),
list(nbrs, tps, fps, tns, fns, tcs, dss, nds))
} else {
all_nbr <- data.frame()
}
}
## ----------------------------- CORR --------------------------------- ##
if ("corr" %in% aspects & !is.null(cont_truth)) {
outPEARSON <- list()
outSPEARMAN <- list()
keeplevels <- c()
for (i in all_methods) {
inpcol <- select_measure(cobradata, i, asp = "corr",
prefer_pval = prefer_pval)
if (!is.null(inpcol)) {
tmp <- slot(cobradata, inpcol)[i]
allg <- get_keepfeatures(truth = truth(cobradata),
df = tmp, method = i,
colm = cont_truth, onlyshared = onlyshared)
tmp <- tmp[match(allg, rownames(tmp)), , drop = FALSE]
truth <- truth(cobradata)[match(allg, rownames(truth(cobradata))), ,
drop = FALSE]
kltmp <- get_keeplevels(truth = truth, splv = splv,
binary_truth = NULL,
maxsplit = maxsplit)
keeplevels <- union(keeplevels, kltmp)
PEARSON <- list()
SPEARMAN <- list()
isf <- intersect(which(is.finite(tmp[[i]])),
which(is.finite(truth[, cont_truth])))
pearson <- stats::cor(tmp[[i]][isf], truth[, cont_truth][isf],
use = "complete.obs", method = "pearson")
spearman <- stats::cor(tmp[[i]][isf], truth[, cont_truth][isf],
use = "complete.obs", method = "spearman")
PEARSON[[paste0(i, "_overall", "__", inpcol)]] <-
list(basemethod = i, meas_type = inpcol, pearson = pearson)
SPEARMAN[[paste0(i, "_overall", "__", inpcol)]] <-
list(basemethod = i, meas_type = inpcol, spearman = spearman)
if (splv != "none") {
for (j in kltmp) {
g <- rownames(truth)[which(truth[[splv]] == j)]
isf <- intersect(which(is.finite(tmp[match(g, rownames(tmp)), i])),
which(is.finite(truth[match(g, rownames(truth)),
cont_truth])))
pearson <- stats::cor(tmp[match(g, rownames(tmp)), i][isf],
truth[match(g, rownames(truth)),
cont_truth][isf],
use = "complete.obs", method = "pearson")
spearman <- stats::cor(tmp[match(g, rownames(tmp)), i][isf],
truth[match(g, rownames(truth)),
cont_truth][isf],
use = "complete.obs", method = "spearman")
PEARSON[[paste0(i, "_", splv, ":", j, "__", inpcol)]] <-
list(basemethod = i, meas_type = inpcol, pearson = pearson)
SPEARMAN[[paste0(i, "_", splv, ":", j, "__", inpcol)]] <-
list(basemethod = i, meas_type = inpcol, spearman = spearman)
}
}
outPEARSON <- c(outPEARSON, PEARSON)
outSPEARMAN <- c(outSPEARMAN, SPEARMAN)
} else {
message("column ", i, " is being ignored for correlation calculations")
}
}
if (any(sapply(lapply(outPEARSON, function(w) w$pearson), length) > 0)) {
pearsons <- t(do.call(rbind, lapply(outPEARSON, function(w) w$pearson)))
spearmans <- t(do.call(rbind,
lapply(outSPEARMAN, function(w) w$spearman)))
vp <- sapply(outPEARSON, function(w) w$basemethod)
vs <- sapply(outSPEARMAN, function(w) w$basemethod)
pearsons <- extend_resulttable(pearsons, splv, keeplevels, "PEARSON",
vp, domelt = TRUE)
spearmans <- extend_resulttable(spearmans, splv, keeplevels, "SPEARMAN",
vs, domelt = TRUE)
corrs <- merge(pearsons, spearmans)
} else {
corrs <- data.frame()
}
} else {
corrs <- data.frame()
}
## ----------------------------- TPR ---------------------------------- ##
if (any(c("tpr", "fdrtpr", "fdrnbr") %in% aspects) & !is.null(binary_truth)) {
outTPR <- list()
keeplevels <- c()
for (i in all_methods) {
inpcol <- select_measure(cobradata, i, asp = "tpr",
prefer_pval = prefer_pval)
if (!is.null(inpcol)) {
tmp <- slot(cobradata, inpcol)[i]
allg <- get_keepfeatures(truth = truth(cobradata),
df = tmp, method = i,
colm = binary_truth, onlyshared = onlyshared)
tmp <- tmp[match(allg, rownames(tmp)), , drop = FALSE]
truth <- truth(cobradata)[match(allg, rownames(truth(cobradata))), ,
drop = FALSE]
kltmp <- get_keeplevels(truth = truth, splv = splv,
binary_truth = binary_truth,
maxsplit = maxsplit)
keeplevels <- union(keeplevels, kltmp)
if (inpcol == "padj") {
TPR <- list()
tpr <- gen_thr_vec(thrs)
for (thr in thrs) {
signif <- rownames(tmp)[which(tmp[i] <= thr)]
tpr[paste0("thr", thr)] <-
length(intersect(
signif, rownames(truth)[which(truth[, binary_truth] == 1)]))/
length(which(truth[, binary_truth] == 1))
}
TPR[[paste0(i, "_overall", "__", inpcol)]] <- list(basemethod = i,
meas_type = inpcol,
tpr = tpr)
if (splv != "none") {
for (j in kltmp) {
tpr <- gen_thr_vec(thrs)
for (thr in thrs) {
g <- rownames(truth)[which(truth[[splv]] == j)]
signif <- intersect(g, rownames(tmp)[which(tmp[i] <= thr)])
gt <- intersect(
g, rownames(truth)[which(truth[, binary_truth] == 1)])
gf <- intersect(g, signif)
tpr[paste0("thr", thr)] <- length(intersect(gf, gt))/length(gt)
}
TPR[[paste0(i, "_", splv, ":", j, "__", inpcol)]] <-
list(basemethod = i, meas_type = inpcol, tpr = tpr)
}
}
outTPR <- c(outTPR, TPR)
}
} else {
message("column ", i, " is being ignored for TPR calculations")
}
}
if (any(sapply(lapply(outTPR, function(w) w$tpr), length) > 0)) {
tprs <- t(do.call(rbind, lapply(outTPR, function(w) w$tpr)))
vt <- sapply(outTPR, function(w) w$basemethod)
tprs <- extend_resulttable(tprs, splv, keeplevels, "TPR",
vt, domelt = TRUE)
} else {
tprs <- data.frame()
}
} else {
tprs <- data.frame()
}
## ----------------------------- FDR ---------------------------------- ##
if (any(c("fdrtpr", "fdrnbr") %in% aspects) & !is.null(binary_truth)) {
outFDR <- list()
keeplevels <- c()
for (i in all_methods) {
inpcol <- select_measure(cobradata, i, asp = "fdr",
prefer_pval = prefer_pval)
if (!is.null(inpcol)) {
tmp <- slot(cobradata, inpcol)[i]
allg <- get_keepfeatures(truth = truth(cobradata),
df = tmp, method = i,
colm = binary_truth, onlyshared = onlyshared)
tmp <- tmp[match(allg, rownames(tmp)), , drop = FALSE]
truth <- truth(cobradata)[match(allg, rownames(truth(cobradata))), ,
drop = FALSE]
kltmp <- get_keeplevels(truth = truth, splv = splv,
binary_truth = binary_truth,
maxsplit = maxsplit)
keeplevels <- union(keeplevels, kltmp)
if (inpcol == "padj") {
FDR <- list()
fdr <- gen_thr_vec(thrs)
for (thr in thrs) {
signif <- rownames(tmp)[which(tmp[i] <= thr)]
if (length(signif) == 0) {
fdr[paste0("thr", thr)] <- 0
} else {
fdr[paste0("thr", thr)] <-
length(setdiff(
signif, rownames(truth)[which(truth[, binary_truth] == 1)])) /
length(signif)
}
}
FDR[[paste0(i, "_overall", "__", inpcol)]] <- list(basemethod = i,
meas_type = inpcol,
fdr = fdr)
if (splv != "none" & any(truth[, binary_truth] == 0)) {
for (j in kltmp) {
fdr <- gen_thr_vec(thrs)
for (thr in thrs) {
g <- rownames(truth)[which(truth[[splv]] == j)]
signif <- intersect(g, rownames(tmp)[which(tmp[i] <= thr)])
gt <- intersect(
g, rownames(truth)[which(truth[, binary_truth] == 0)])
gf <- intersect(g, signif)
if (length(gf) == 0) {
fdr[paste0("thr", thr)] <- 0
} else {
fdr[paste0("thr", thr)] <-
length(intersect(gf, gt))/length(gf)
}
}
FDR[[paste0(i, "_", splv, ":", j, "__", inpcol)]] <-
list(basemethod = i, meas_type = inpcol, fdr = fdr)
}
}
outFDR <- c(outFDR, FDR)
}
} else {
message("column ", i, " is being ignored for FDR calculations")
}
}
if (any(sapply(lapply(outFDR, function(w) w$fdr), length) > 0)) {
fdrs <- t(do.call(rbind, lapply(outFDR, function(w) w$fdr)))
vf <- sapply(outFDR, function(w) w$basemethod)
fdrs <- extend_resulttable(fdrs, splv, keeplevels, "FDR",
vf, domelt = TRUE)
fdrs$satis <- ifelse(fdrs$FDR <= as.numeric(gsub("thr", "", fdrs$thr)),
"yes", "no")
fdrs$method.satis <- paste0(fdrs$fullmethod, fdrs$satis)
} else {
fdrs <- data.frame()
}
} else {
fdrs <- data.frame()
}
## ----------------------------- FPR ---------------------------------- ##
if ("fpr" %in% aspects & !is.null(binary_truth)) {
outFPR <- list()
keeplevels <- c()
for (i in all_methods) {
inpcol <- select_measure(cobradata, i, asp = "fpr",
prefer_pval = prefer_pval)
if (!is.null(inpcol)) {
tmp <- slot(cobradata, inpcol)[i]
allg <- get_keepfeatures(truth = truth(cobradata),
df = tmp, method = i,
colm = binary_truth, onlyshared = onlyshared)
tmp <- tmp[match(allg, rownames(tmp)), , drop = FALSE]
truth <- truth(cobradata)[match(allg, rownames(truth(cobradata))), ,
drop = FALSE]
kltmp <- get_keeplevels(truth = truth, splv = splv,
binary_truth = binary_truth,
maxsplit = maxsplit)
keeplevels <- union(keeplevels, kltmp)
if (inpcol == "padj") {
FPR <- list()
fpr <- gen_thr_vec(thrs)
for (thr in thrs) {
signif <- rownames(tmp)[which(tmp[i] <= thr)]
fpr[paste0("thr", thr)] <-
length(intersect(
signif, rownames(truth)[which(truth[, binary_truth] == 0)])) /
length(which(truth[, binary_truth] == 0))
}
FPR[[paste0(i, "_overall", "__", inpcol)]] <- list(basemethod = i,
meas_type = inpcol,
fpr = fpr)
if (splv != "none" & any(truth[, binary_truth] == 0)) {
for (j in kltmp) {
fpr <- gen_thr_vec(thrs)
for (thr in thrs) {
g <- rownames(truth)[which(truth[[splv]] == j)]
signif <- intersect(g, rownames(tmp)[which(tmp[i] <= thr)])
gt <- intersect(
g, rownames(truth)[which(truth[, binary_truth] == 0)])
gf <- intersect(g, signif)
fpr[paste0("thr", thr)] <- length(intersect(gf, gt))/length(gt)
}
FPR[[paste0(i, "_", splv, ":", j, "__", inpcol)]] <-
list(basemethod = i, meas_type = inpcol, fpr = fpr)
}
}
outFPR <- c(outFPR, FPR)
}
} else {
message("column ", i, " is being ignored for FPR calculations")
}
}
if (any(sapply(lapply(outFPR, function(w) w$fpr), length) > 0)) {
fprs <- t(do.call(rbind, lapply(outFPR, function(w) w$fpr)))
vff <- sapply(outFPR, function(w) w$basemethod)
fprs <- extend_resulttable(fprs, splv, keeplevels, "FPR",
vff, domelt = TRUE)
} else {
fprs <- data.frame()
}
} else {
fprs <- data.frame()
}
## ----------------------------- FSRNBR ------------------------------- ##
if ("fsrnbr" %in% aspects && !is.null(cont_truth)) {
outFSR <- list()
keeplevels <- c()
for (i in all_methods) {
inpcol <- select_measure(cobradata, i, asp = "fsrnbr",
prefer_pval = prefer_pval)
if (!is.null(inpcol)) {
svl <- slot(cobradata, inpcol)[i]
scr <- slot(cobradata, "score")[i]
allg <- get_keepfeatures(truth = truth(cobradata),
df = svl, method = i,
colm = cont_truth, onlyshared = onlyshared)
truth <- truth(cobradata)[match(allg, rownames(truth(cobradata))), ,
drop = FALSE]
svlv <- structure(svl[match(allg, rownames(svl)), ], names = allg)
scrv <- structure(scr[match(allg, rownames(scr)), ], names = allg)
trtv <- structure(truth[, cont_truth], names = rownames(truth))
stopifnot(all(names(svlv) == names(scrv)))
stopifnot(all(names(svlv) == names(trtv)))
## Make sure that genes without estimated logFCs are counted as having
## mismatching signs
if (any(is.na(scrv))) {
scrv[is.na(scrv)] <- -trtv[is.na(scrv)]
}
kltmp <- get_keeplevels(truth = truth, splv = splv,
binary_truth = NULL,
maxsplit = maxsplit)
keeplevels <- union(keeplevels, kltmp)
FSR <- list()
fsr <- gen_thr_vec(svalthrs)
fs <- gen_thr_vec(svalthrs)
ts <- gen_thr_vec(svalthrs)
possign <- gen_thr_vec(svalthrs)
negsign <- gen_thr_vec(svalthrs)
zerosign <- gen_thr_vec(svalthrs)
totcalled <- gen_thr_vec(svalthrs)
nbr <- gen_thr_vec(svalthrs)
for (thr in svalthrs) {
passed <- which(svlv <= thr)
tested <- which(!is.na(svlv))
nbr[paste0("thr", thr)] <- length(passed)
fs[paste0("thr", thr)] <-
length(which(abs(sign(trtv[passed]) - sign(scrv[passed])) == 2))
ts[paste0("thr", thr)] <-
length(which(sign(trtv[passed]) == sign(scrv[passed])))
possign[paste0("thr", thr)] <- length(which(sign(trtv) == 1))
negsign[paste0("thr", thr)] <- length(which(sign(trtv) == -1))
zerosign[paste0("thr", thr)] <- length(which(sign(trtv) == 0))
totcalled[paste0("thr", thr)] <- length(tested)
if (length(passed) == 0) {
fsr[paste0("thr", thr)] <- 0
} else {
fsr[paste0("thr", thr)] <- fs[paste0("thr", thr)]/length(passed)
}
}
FSR[[paste0(i, "_overall", "__", inpcol)]] <-
list(basemethod = i,
meas_type = inpcol,
fsr = fsr,
nbr = nbr,
fs = fs,
ts = ts,
possign = possign,
negsign = negsign,
zerosign = zerosign,
totcalled = totcalled)
if (splv != "none") {
for (j in kltmp) {
fsr <- gen_thr_vec(svalthrs)
fs <- gen_thr_vec(svalthrs)
ts <- gen_thr_vec(svalthrs)
possign <- gen_thr_vec(svalthrs)
negsign <- gen_thr_vec(svalthrs)
zerosign <- gen_thr_vec(svalthrs)
totcalled <- gen_thr_vec(svalthrs)
nbr <- gen_thr_vec(svalthrs)
g <- rownames(truth)[which(truth[[splv]] == j)]
allg2 <- intersect(allg, g)
svlv2 <- svlv[match(allg2, names(svlv))]
scrv2 <- scrv[match(allg2, names(scrv))]
trtv2 <- trtv[match(allg2, names(scrv))]
for (thr in svalthrs) {
passed <- which(svlv2 <= thr)
tested <- which(!is.na(svlv2))
nbr[paste0("thr", thr)] <- length(passed)
fs[paste0("thr", thr)] <-
length(which(abs(sign(trtv2[passed]) -
sign(scrv2[passed])) == 2))
ts[paste0("thr", thr)] <-
length(which(sign(trtv2[passed]) == sign(scrv2[passed])))
possign[paste0("thr", thr)] <- length(which(sign(trtv2) == 1))
negsign[paste0("thr", thr)] <- length(which(sign(trtv2) == -1))
zerosign[paste0("thr", thr)] <- length(which(sign(trtv2) == 0))
totcalled[paste0("thr", thr)] <- length(tested)
if (length(passed) == 0) {
fsr[paste0("thr", thr)] <- 0
} else {
fsr[paste0("thr", thr)] <- fs[paste0("thr", thr)]/length(passed)
}
}
FSR[[paste0(i, "_", splv, ":", j, "__", inpcol)]] <-
list(basemethod = i, meas_type = inpcol, fsr = fsr, nbr = nbr,
fs = fs, ts = ts, possign = possign, negsign = negsign,
zerosign = zerosign, totcalled = totcalled)
}
}
outFSR <- c(outFSR, FSR)
} else {
message("column ", i, " is being ignored for FSR/NBR calculations")
}
}
if (any(sapply(lapply(outFSR, function(w) w$fsr), length) > 0)) {
fsrs <- t(do.call(rbind, lapply(outFSR, function(w) w$fsr)))
nbrs <- t(do.call(rbind, lapply(outFSR, function(w) w$nbr)))
tss <- t(do.call(rbind, lapply(outFSR, function(w) w$ts)))
fss <- t(do.call(rbind, lapply(outFSR, function(w) w$fs)))
possigns <- t(do.call(rbind, lapply(outFSR, function(w) w$possign)))
negsigns <- t(do.call(rbind, lapply(outFSR, function(w) w$negsign)))
zerosigns <- t(do.call(rbind, lapply(outFSR, function(w) w$zerosign)))
totcalleds <- t(do.call(rbind, lapply(outFSR, function(w) w$totcalled)))
vf <- sapply(outFSR, function(w) w$basemethod)
fsrs <- extend_resulttable(fsrs, splv, keeplevels, "FSR",
vf, domelt = TRUE)
fsrs$satis <- ifelse(fsrs$FSR <= as.numeric(gsub("thr", "", fsrs$thr)),
"yes", "no")
fsrs$method.satis <- paste0(fsrs$fullmethod, fsrs$satis)
nbrs <- extend_resulttable(nbrs, splv, keeplevels, "NBR",
vf, domelt = TRUE)
tss <- extend_resulttable(tss, splv, keeplevels, "TS", vf, domelt = TRUE)
fss <- extend_resulttable(fss, splv, keeplevels, "FS", vf, domelt = TRUE)
possigns <- extend_resulttable(possigns, splv, keeplevels, "POSSIGN",
vf, domelt = TRUE)
negsigns <- extend_resulttable(negsigns, splv, keeplevels, "NEGSIGN",
vf, domelt = TRUE)
zerosigns <- extend_resulttable(zerosigns, splv, keeplevels, "ZEROSIGN",
vf, domelt = TRUE)
totcalleds <- extend_resulttable(totcalleds, splv, keeplevels,
"TOT_CALLED", vf, domelt = TRUE)
fsrs <- Reduce(function(...) merge(..., all = TRUE),
list(fsrs = fsrs, nbrs = nbrs, tss = tss, fss = fss,
possigns = possigns, negsigns = negsigns,
zerosigns = zerosigns, totcalleds = totcalleds))
} else {
fsrs <- data.frame()
}
} else {
fsrs <- data.frame()
}
## ------------------------- FSRNBRcurve ------------------------------ ##
if ("fsrnbrcurve" %in% aspects & !is.null(cont_truth)) {
outFSRNBR <- list()
keeplevels <- c()
for (i in all_methods) {
inpcol <- select_measure(cobradata, i, asp = "fsrnbr",
prefer_pval = prefer_pval)
if (!is.null(inpcol)) {
tmp <- slot(cobradata, inpcol)[i]
scr <- slot(cobradata, "score")[i]
allg <- get_keepfeatures(truth = truth(cobradata),
df = tmp, method = i,
colm = cont_truth, onlyshared = onlyshared)
tmp <- tmp[match(allg, rownames(tmp)), , drop = FALSE]
truth <- truth(cobradata)[match(allg, rownames(truth(cobradata))), ,
drop = FALSE]
scr <- scr[match(allg, rownames(scr)), , drop = FALSE]
kltmp <- get_keeplevels(truth = truth, splv = splv,
binary_truth = NULL, maxsplit = maxsplit)
keeplevels <- union(keeplevels, kltmp)
FSRNBR <- list()
conttruth <- truth[, cont_truth]
names(conttruth) <- rownames(truth)
vals <- tmp[[i]]
names(vals) <- rownames(tmp)
estvals <- scr[, i]
names(estvals) <- rownames(scr)
fsrnbr <- get_curve_cont(conttruth = conttruth, estvals = estvals,
svals = vals, aspc = "fsrnbr")
FSRNBR[[paste0(i, "_overall", "__", inpcol)]] <-
list(basemethod = i, meas_type = inpcol, fsrnbr = fsrnbr)
if (splv != "none") {
for (j in kltmp) {
conttruth <- truth[which(truth[[splv]] == j), cont_truth]
names(conttruth) <- rownames(truth)[which(truth[[splv]] == j)]
fsrnbr <- get_curve_cont(conttruth = conttruth, estvals = estvals,
svals = vals, aspc = "fsrnbr")
if (!is.null(fsrnbr)) {
FSRNBR[[paste0(i, "_", splv, ":", j, "__", inpcol)]] <-
list(basemethod = i, meas_type = inpcol, fsrnbr = fsrnbr)
}
}
}
outFSRNBR <- c(outFSRNBR, FSRNBR)
} else {
message("column ", i, " is being ignored for FSRNBR calculations")
}
}
if (any(sapply(lapply(outFSRNBR, function(w) w$fsrnbr),
length) > 0)) {
vfsn <- sapply(outFSRNBR, function(w) w$basemethod)
fsrnbrs <- do.call(rbind, lapply(names(outFSRNBR), function(s) {
data.frame(FSR = outFSRNBR[[s]]$fsrnbr[, "FSR"],
NBR = outFSRNBR[[s]]$fsrnbr[, "NBR"],
CUTOFF = outFSRNBR[[s]]$fsrnbr[, "SVAL_CUTOFF"],
TS = outFSRNBR[[s]]$fsrnbr[, "TS"],
FS = outFSRNBR[[s]]$fsrnbr[, "FS"],
TOT_CALLED = outFSRNBR[[s]]$fsrnbr[, "TOT_CALLED"],
POSSIGN = outFSRNBR[[s]]$fsrnbr[, "POSSIGN"],
NEGSIGN = outFSRNBR[[s]]$fsrnbr[, "NEGSIGN"],
ZEROSIGN = outFSRNBR[[s]]$fsrnbr[, "ZEROSIGN"],
method = s)
}))
fsrnbrs <- extend_resulttable(fsrnbrs, splv, keeplevels, NULL,
vfsn, domelt = FALSE)
} else {
fsrnbrs <- data.frame()
}
} else {
fsrnbrs <- data.frame()
}
## ------------------------- FDRTPRcurve ------------------------------ ##
if (any(c("fdrtprcurve", "fdrnbrcurve") %in% aspects) &
!is.null(binary_truth)) {
outFDRTPR <- list()
keeplevels <- c()
for (i in all_methods) {
inpcol <- select_measure(cobradata, i, asp = "fdrtpr",
prefer_pval = prefer_pval)
if (!is.null(inpcol)) {
tmp <- slot(cobradata, inpcol)[i]
allg <- get_keepfeatures(truth = truth(cobradata),
df = tmp, method = i,
colm = binary_truth, onlyshared = onlyshared)
tmp <- tmp[match(allg, rownames(tmp)), , drop = FALSE]
truth <- truth(cobradata)[match(allg, rownames(truth(cobradata))), ,
drop = FALSE]
kltmp <- get_keeplevels(truth = truth, splv = splv,
binary_truth = binary_truth,
maxsplit = maxsplit)
keeplevels <- union(keeplevels, kltmp)
if (!is.null(inpcol)) {
if (any(truth[, binary_truth] == 0) &
any(truth[, binary_truth] == 1)) {
FDRTPR <- list()
bintruth <- truth[, binary_truth]
names(bintruth) <- rownames(truth)
vals <- tmp[[i]]
names(vals) <- rownames(tmp)
fdrtpr <- get_curve(bintruth = bintruth, vals = vals,
revr = ifelse(inpcol == "score", FALSE, TRUE),
aspc = "fdrtpr", rank_by_abs = rank_by_abs)
FDRTPR[[paste0(i, "_overall", "__", inpcol)]] <-
list(basemethod = i, meas_type = inpcol, fdrtpr = fdrtpr)
if (splv != "none") {
for (j in kltmp) {
bintruth <- truth[which(truth[[splv]] == j), binary_truth]
names(bintruth) <- rownames(truth)[which(truth[[splv]] == j)]
fdrtpr <- get_curve(bintruth = bintruth, vals = vals,
revr = ifelse(inpcol == "score",
FALSE, TRUE),
aspc = "fdrtpr", rank_by_abs = rank_by_abs)
if (!is.null(fdrtpr)) {
FDRTPR[[paste0(i, "_", splv, ":", j, "__", inpcol)]] <-
list(basemethod = i, meas_type = inpcol, fdrtpr = fdrtpr)
}
}
}
} else {
FDRTPR <- NULL
}
outFDRTPR <- c(outFDRTPR, FDRTPR)
}
} else {
message("column ", i, " is being ignored for FDRTPR calculations")
}
}
if (any(sapply(lapply(outFDRTPR, function(w) w$fdrtpr),
length) > 0)) {
vftp <- sapply(outFDRTPR, function(w) w$basemethod)
fdrtprs <- do.call(rbind, lapply(names(outFDRTPR), function(s) {
data.frame(FDR = outFDRTPR[[s]]$fdrtpr[, "FDR"],
TPR = outFDRTPR[[s]]$fdrtpr[, "TPR"],
NBR = outFDRTPR[[s]]$fdrtpr[, "NBR"],
CUTOFF = outFDRTPR[[s]]$fdrtpr[, "CUTOFF"],
TP = outFDRTPR[[s]]$fdrtpr[, "TP"],
FP = outFDRTPR[[s]]$fdrtpr[, "FP"],
TN = outFDRTPR[[s]]$fdrtpr[, "TN"],
FN = outFDRTPR[[s]]$fdrtpr[, "FN"],
TOT_CALLED = outFDRTPR[[s]]$fdrtpr[, "TOT_CALLED"],
DIFF = outFDRTPR[[s]]$fdrtpr[, "DIFF"],
NONDIFF = outFDRTPR[[s]]$fdrtpr[, "NONDIFF"],
method = s)
}))
fdrtprs <- extend_resulttable(fdrtprs, splv, keeplevels, NULL,
vftp, domelt = FALSE)
} else {
fdrtprs <- data.frame()
}
} else {
fdrtprs <- data.frame()
}
fdrnbrs <- fdrtprs
## ----------------------------- ROC ---------------------------------- ##
if ("roc" %in% aspects & !is.null(binary_truth)) {
outROC <- list()
keeplevels <- c()
for (i in all_methods) {
inpcol <- select_measure(cobradata, i, asp = "roc",
prefer_pval = prefer_pval)
if (!is.null(inpcol)) {
tmp <- slot(cobradata, inpcol)[i]
allg <- get_keepfeatures(truth = truth(cobradata),
df = tmp, method = i,
colm = binary_truth, onlyshared = onlyshared)
tmp <- tmp[match(allg, rownames(tmp)), , drop = FALSE]
truth <- truth(cobradata)[match(allg, rownames(truth(cobradata))), ,
drop = FALSE]
kltmp <- get_keeplevels(truth = truth, splv = splv,
binary_truth = binary_truth,
maxsplit = maxsplit)
keeplevels <- union(keeplevels, kltmp)
if (any(truth[, binary_truth] == 0) &
any(truth[, binary_truth] == 1)) {
ROC <- list()
bintruth <- truth[, binary_truth]
names(bintruth) <- rownames(truth)
vals <- tmp[[i]]
names(vals) <- rownames(tmp)
roc <- get_curve(bintruth = bintruth, vals = vals,
revr = ifelse(inpcol == "score", FALSE, TRUE),
aspc = "roc", rank_by_abs = rank_by_abs)
ROC[[paste0(i, "_overall", "__", inpcol)]] <-
list(basemethod = i, meas_type = inpcol, roc = roc)
if (splv != "none") {
for (j in kltmp) {
bintruth <- truth[which(truth[[splv]] == j), binary_truth]
names(bintruth) <- rownames(truth)[which(truth[[splv]] == j)]
roc <- get_curve(bintruth = bintruth, vals = vals,
revr = ifelse(inpcol == "score", FALSE, TRUE),
aspc = "roc", rank_by_abs = rank_by_abs)
if (!is.null(roc)) {
ROC[[paste0(i, "_", splv, ":", j, "__", inpcol)]] <-
list(basemethod = i, meas_type = inpcol, roc = roc)
}
}
}
}
outROC <- c(outROC, ROC)
} else {
message("column ", i, " is being ignored for ROC calculations")
}
}
if (any(sapply(lapply(outROC, function(w) w$roc), length) > 0)) {
vr <- sapply(outROC, function(w) w$basemethod)
rocs <- do.call(rbind, lapply(names(outROC), function(s) {
data.frame(FPR = outROC[[s]]$roc[, "FPR"],
TPR = outROC[[s]]$roc[, "TPR"],
ROC_CUTOFF = outROC[[s]]$roc[, "ROC_CUTOFF"],
method = s)
}))
rocs <- extend_resulttable(rocs, splv, keeplevels, NULL,
vr, domelt = FALSE)
} else {
rocs <- data.frame()
}
} else {
rocs <- data.frame()
}
## ---------------------------- SCATTER -------------------------------- ##
if ("scatter" %in% aspects & !is.null(cont_truth)) {
outSCATTER <- list()
keeplevels <- c()
for (i in all_methods) {
inpcol <- select_measure(cobradata, i, asp = "scatter",
prefer_pval = prefer_pval)
if (!is.null(inpcol)) {
tmp <- slot(cobradata, inpcol)[i]
allg <- get_keepfeatures(truth = truth(cobradata),
df = tmp, method = i,
colm = cont_truth, onlyshared = onlyshared)
tmp <- tmp[match(allg, rownames(tmp)), , drop = FALSE]
truth <- truth(cobradata)[match(allg, rownames(truth(cobradata))), ,
drop = FALSE]
kltmp <- get_keeplevels(truth = truth, splv = splv,
binary_truth = NULL,
maxsplit = maxsplit)
keeplevels <- union(keeplevels, kltmp)
SCATTER <- list()
SCATTER[[paste0(i, "_overall", "__", inpcol)]] <-
list(basemethod = i, meas_type = inpcol,
scatter = data.frame(vals = tmp[[i]],
truth = truth[, cont_truth],
row.names = rownames(tmp),
stringsAsFactors = FALSE))
if (splv != "none") {
for (j in kltmp) {
s <- which(truth[[splv]] == j)
SCATTER[[paste0(i, "_", splv, ":", j, "__", inpcol)]] <-
list(basemethod = i, meas_type = inpcol,
scatter = data.frame(vals = tmp[[i]][s],
truth = truth[s, cont_truth],
row.names = rownames(tmp)[s],
stringsAsFactors = FALSE))
}
}
} else {
SCATTER <- NULL
}
outSCATTER <- c(outSCATTER, SCATTER)
}
if (any(sapply(lapply(outSCATTER, function(w) w$scatter), length) > 0)) {
vsc <- sapply(outSCATTER, function(w) w$basemethod)
scatters <- do.call(rbind, lapply(names(outSCATTER), function(s) {
data.frame(OBSERVATION = outSCATTER[[s]]$scatter[, "vals"],
TRUTH = outSCATTER[[s]]$scatter[, "truth"],
feature = rownames(outSCATTER[[s]]$scatter),
method = s)
}))
scatters <- extend_resulttable(scatters, splv, keeplevels, NULL,
vsc, domelt = FALSE)
} else {
scatters <- data.frame()
}
} else {
scatters <- data.frame()
}
## --------------------------- DEVIATION ------------------------------- ##
if ("deviation" %in% aspects & !is.null(cont_truth)) {
outDEVIATION <- list()
keeplevels <- c()
for (i in all_methods) {
inpcol <- select_measure(cobradata, i, asp = "deviation",
prefer_pval = prefer_pval)
if (!is.null(inpcol)) {
tmp <- slot(cobradata, inpcol)[i]
allg <- get_keepfeatures(truth = truth(cobradata),
df = tmp, method = i,
colm = cont_truth, onlyshared = onlyshared)
tmp <- tmp[match(allg, rownames(tmp)), , drop = FALSE]
truth <- truth(cobradata)[match(allg, rownames(truth(cobradata))), ,
drop = FALSE]
kltmp <- get_keeplevels(truth = truth, splv = splv,
binary_truth = NULL,
maxsplit = maxsplit)
keeplevels <- union(keeplevels, kltmp)
DEVIATION <- list()
DEVIATION[[paste0(i, "_overall", "__", inpcol)]] <-
list(basemethod = i, meas_type = inpcol,
deviation = data.frame(vals = tmp[[i]] - truth[, cont_truth],
row.names = rownames(tmp),
stringsAsFactors = FALSE))
if (splv != "none") {
for (j in kltmp) {
s <- which(truth[[splv]] == j)
DEVIATION[[paste0(i, "_", splv, ":", j, "__", inpcol)]] <-
list(basemethod = i, meas_type = inpcol,
deviation = data.frame(vals = tmp[[i]][s] -
truth[s, cont_truth],
row.names = rownames(tmp)[s],
stringsAsFactors = FALSE))
}
}
} else {
DEVIATION <- NULL
}
outDEVIATION <- c(outDEVIATION, DEVIATION)
}
if (any(sapply(lapply(outDEVIATION,
function(w) w$deviation), length) > 0)) {
vdv <- sapply(outDEVIATION, function(w) w$basemethod)
deviations <- do.call(rbind, lapply(names(outDEVIATION), function(s) {
data.frame(DEVIATION = outDEVIATION[[s]]$deviation[, "vals"],
feature = rownames(outDEVIATION[[s]]$deviation),
method = s)
}))
deviations <- extend_resulttable(deviations, splv, keeplevels, NULL,
vdv, domelt = FALSE)
} else {
deviations <- data.frame()
}
} else {
deviations <- data.frame()
}
## ----------------------------- FPC ---------------------------------- ##
if ("fpc" %in% aspects & !is.null(binary_truth)) {
outFPC <- list()
keeplevels <- c()
for (i in all_methods) {
inpcol <- select_measure(cobradata, i, asp = "fpc",
prefer_pval = prefer_pval)
if (!is.null(inpcol)) {
tmp <- slot(cobradata, inpcol)[i]
allg <- get_keepfeatures(truth = truth(cobradata),
df = tmp, method = i,
colm = binary_truth, onlyshared = onlyshared)
tmp <- tmp[match(allg, rownames(tmp)), , drop = FALSE]
truth <- truth(cobradata)[match(allg, rownames(truth(cobradata))), ,
drop = FALSE]
kltmp <- get_keeplevels(truth = truth, splv = splv,
binary_truth = binary_truth,
maxsplit = maxsplit)
keeplevels <- union(keeplevels, kltmp)
if (any(truth[, binary_truth] == 0) &
any(truth[, binary_truth] == 1)) {
FPC <- list()
bintruth <- truth[, binary_truth]
names(bintruth) <- rownames(truth)
vals <- tmp[[i]]
names(vals) <- rownames(tmp)
fpc <- get_curve(bintruth = bintruth, vals = vals,
revr = ifelse(inpcol == "score", FALSE, TRUE),
aspc = "fpc", rank_by_abs = rank_by_abs)
FPC[[paste0(i, "_overall", "__", inpcol)]] <-
list(basemethod = i, meas_type = inpcol, fpc = fpc)
if (splv != "none") {
for (j in kltmp) {
bintruth <- truth[which(truth[[splv]] == j), binary_truth]
names(bintruth) <- rownames(truth)[which(truth[[splv]] == j)]
fpc <- get_curve(bintruth = bintruth, vals = vals,
revr = ifelse(inpcol == "score", FALSE, TRUE),
aspc = "fpc", rank_by_abs = rank_by_abs)
if (!is.null(fpc)) {
FPC[[paste0(i, "_", splv, ":", j, "__", inpcol)]] <-
list(basemethod = i, meas_type = inpcol, fpc = fpc)
}
}
}
}
outFPC <- c(outFPC, FPC)
} else {
message("column ", i, " is being ignored for FPC calculations")
}
}
if (any(sapply(lapply(outFPC, function(w) w$fpc), length) > 0)) {
vfc <- sapply(outFPC, function(w) w$basemethod)
fpcs <- do.call(rbind, lapply(names(outFPC), function(s) {
data.frame(topN = outFPC[[s]]$fpc[, "topN"],
FP = outFPC[[s]]$fpc[, "FP"],
FPC_CUTOFF = outFPC[[s]]$fpc[, "FPC_CUTOFF"],
method = s)
}))
fpcs <- extend_resulttable(fpcs, splv, keeplevels, NULL,
vfc, domelt = FALSE)
} else {
fpcs <- data.frame()
}
} else {
fpcs <- data.frame()
}
## --------------------------- OVERLAP -------------------------------- ##
if ("overlap" %in% aspects) {
tmplist <- padj(cobradata)
if (length(tmplist) > 0) {
if (!is.null(binary_truth)) {
## Add 'truth' to list of results, if type_venn is not 'rank' since in
## that case, the 'true' genes can be ranked in any order
if (type_venn == "rank") {
message(paste0("Note that including truth with type_venn = 'rank' ",
"is not supported, since true features may be ",
"ranked in arbitrary order"))
} else {
tmp2 <- 1 - truth(cobradata)[, binary_truth, drop = FALSE]
colnames(tmp2) <- "truth"
missing_genes <- setdiff(rownames(tmp2), rownames(tmplist))
tmpadd <- as.data.frame(matrix(NA, length(missing_genes),
ncol(tmplist),
dimnames = list(missing_genes,
colnames(tmplist))))
tmplist <- rbind(tmplist, tmpadd)
tmplist$truth <- tmp2$truth[match(rownames(tmplist), rownames(tmp2))]
}
}
## Create matrix indicating "significant" features
if (type_venn == "adjp") {
overlap <- apply(tmplist, 2, function(w) {
as.numeric(w <= thr_venn)
})
} else if (type_venn == "rank") {
overlap <- apply(tmplist, 2, function(w) {
as.numeric(w <= sort(w, decreasing = FALSE)[topn_venn])
})
if ("truth" %in% colnames(overlap)) {
overlap[, "truth"] <- as.numeric(tmplist[, "truth"] == 0)
}
}
common_genes <- rownames(tmplist)
rownames(overlap) <- common_genes
overlap <- overlap[, which(colSums(is.na(overlap)) != nrow(overlap))]
## Assume that if we don't have information about a gene, it is "negative"
##overlap[is.na(overlap)] <- 0
overlap <- data.frame(overlap, stringsAsFactors = FALSE)
## If splv is not "none", split overlap matrix
if (splv != "none") {
overlap_overall <- overlap
keep <- intersect(rownames(overlap), rownames(truth(cobradata)))
tth <- truth(cobradata)[match(keep, rownames(truth(cobradata))), ]
keeplevels <- get_keeplevels(truth = tth, splv = splv,
binary_truth = NULL, maxsplit = maxsplit)
overlap <- overlap[match(keep, rownames(overlap)), ]
overlap <- split(overlap, tth[, splv])
## Keep only the top "maxsplit" categories
overlap <- overlap[keeplevels]
## Add the overall category
overlap$overall <- overlap_overall
}
} else {
overlap <- data.frame()
}
} else {
overlap <- data.frame()
}
## --------------------------- RETURNS -------------------------------- ##
## Put data together
if ("fdrtpr" %in% aspects & !is.null(binary_truth)) {
fdrtpr <- Reduce(function(...) merge(..., all = TRUE),
list(all_nbr, tprs, fdrs))
} else {
fdrtpr <- data.frame()
}
if ("fdrnbr" %in% aspects & !is.null(binary_truth)) {
fdrnbr <- Reduce(function(...) merge(..., all = TRUE),
list(all_nbr, tprs, fdrs))
} else {
fdrnbr <- data.frame()
}
if ("tpr" %in% aspects & !is.null(binary_truth)) {
tprs <- Reduce(function(...) merge(..., all = TRUE),
list(all_nbr, tprs))
}
if ("fpr" %in% aspects & !is.null(binary_truth)) {
fprs <- Reduce(function(...) merge(..., all = TRUE),
list(all_nbr, fprs))
}
if (!("tpr" %in% aspects)) tprs <- data.frame()
if (!("fdrtprcurve" %in% aspects)) fdrtprcurve <- data.frame()
if (!("fdrnbrcurve" %in% aspects)) fdrnbrcurve <- data.frame()
if (!("fsrnbrcurve" %in% aspects)) fsrnbrcurve <- data.frame()
COBRAPerformance(tpr = tprs, fpr = fprs, fdrtprcurve = fdrtprs,
fdrnbrcurve = fdrnbrs, deviation = deviations,
roc = rocs, fpc = fpcs, fdrtpr = fdrtpr, fdrnbr = fdrnbr,
maxsplit = maxsplit, overlap = overlap, splv = splv,
corr = corrs, scatter = scatters, onlyshared = onlyshared,
fsrnbrcurve = fsrnbrs, fsrnbr = fsrs)
}
#' Prepare data for plotting
#'
#' Prepare performance data provided in a \code{COBRAPerformance} object
#' (obtained by \code{\link{calculate_performance}}) for plotting.
#'
#' @param cobraperf A \code{COBRAPerformance} object.
#' @param keepmethods A character vector consisting of methods to retain for
#' plotting (these should be a subset of \code{basemethods(cobraperf)}), or
#' NULL (indicating that all methods represented in cobraperf should be
#' retained).
#' @param incloverall A logical indicating whether the "overall" results should
#' be included if the results are stratified by an annotation.
#' @param colorscheme Either a character string giving the color palette to use
#' to define colors for the different methods, or a character vector with
#' colors to use. The available pre-defined palettes depend on the number of
#' different methods to distinguish. The choices are:
#' \describe{
#' \item{- \code{Accent}}{(max 8 methods)}
#' \item{- \code{Dark2}}{(max 8 methods)}
#' \item{- \code{Paired}}{(max 12 methods)}
#' \item{- \code{Pastel1}}{(max 9 methods)}
#' \item{- \code{Pastel2}}{(max 8 methods)}
#' \item{- \code{Set1}}{(max 9 methods)}
#' \item{- \code{Set2}}{(max 8 methods)}
#' \item{- \code{Set3}}{(max 12 methods)}
#' \item{- \code{hue_pal}}{}
#' \item{- \code{rainbow}}{}
#' \item{- \code{heat}}{}
#' \item{- \code{terrain}}{}
#' \item{- \code{topo}}{}
#' \item{- \code{cm}}{}
#' }
#' If the number of allowed methods is exceeded, the colorscheme defaults to
#' \code{hue_pal}.
#' @param facetted A logical indicating whether the results should be split into
#' subpanels when stratified by an annotation (\code{TRUE}), or kept in the
#' same panel but shown with different colors (\code{FALSE}).
#' @param incltruth A logical indicating whether the truth should be included in
#' Venn diagrams.
#' @param conditionalfill A logical indicating whether the points (in FDR/TPR,
#' FDR/NBR, FSR/NBR plots) should be filled conditional on whether they
#' satisfy the imposed criterion (e.g., false discovery rate control at
#' imposed threshold).
#'
#' @return A \code{COBRAPlot} object
#'
#' @export
#' @author Charlotte Soneson
#' @examples
#' data(cobradata_example)
#' cobraperf <- calculate_performance(cobradata_example,
#' binary_truth = "status",
#' cont_truth = "none",
#' aspects = c("fdrtpr", "fdrtprcurve",
#' "tpr", "roc"),
#' thrs = c(0.01, 0.05, 0.1), splv = "none")
#' cobraplot <- prepare_data_for_plot(cobraperf, keepmethods = NULL,
#' colorscheme = "Dark2")
#'
#' ## User-specified colors
#' cobraplot2 <- prepare_data_for_plot(cobraperf, keepmethods = NULL,
#' colorscheme = c("blue", "red", "green"))
prepare_data_for_plot <- function(cobraperf, keepmethods = NULL,
incloverall = TRUE, colorscheme = "hue_pal",
facetted = TRUE, incltruth = TRUE,
conditionalfill = TRUE) {
splitval <- NULL
if (is.null(keepmethods)) {
keepmethods <- basemethods(cobraperf)
}
if (length(intersect(basemethods(cobraperf), keepmethods)) == 0)
return(COBRAPlot())
## Subset cobraperf object
cobraperf <- cobraperf[, keepmethods]
## Exclude truth from overlap matrix
## If truth not included, keep all features and set NAs to 0
if (!isTRUE(incltruth)) {
if (length(overlap(cobraperf)) != 0) {
if (class(overlap(cobraperf)) == "data.frame") {
overlap(cobraperf) <-
overlap(cobraperf)[, setdiff(colnames(overlap(cobraperf)), "truth"),
drop = FALSE]
overlap(cobraperf)[is.na(overlap(cobraperf))] <- 0
} else {
overlap(cobraperf) <- lapply(overlap(cobraperf), function(w) {
w <- w[, setdiff(colnames(w), "truth"), drop = FALSE]
w[is.na(w)] <- 0
w
})
}
}
} else {
## If truth is included, what to do depends on onlyshared.
## If onlyshared = FALSE, remove all features where truth!=NA
## If onlyshared = TRUE, remove all features with any NA
if (length(overlap(cobraperf)) != 0) {
if (class(overlap(cobraperf)) == "data.frame") {
if ("truth" %in% colnames(overlap(cobraperf))) {
if (isTRUE(onlyshared(cobraperf))) {
overlap(cobraperf) <-
overlap(cobraperf)[which(rowSums(is.na(overlap(cobraperf))) == 0),
, drop = FALSE]
} else {
overlap(cobraperf) <-
overlap(cobraperf)[which(!is.na(overlap(cobraperf)$truth)),
, drop = FALSE]
}
}
overlap(cobraperf)[is.na(overlap(cobraperf))] <- 0
} else {
overlap(cobraperf) <- lapply(overlap(cobraperf), function(w) {
if ("truth" %in% colnames(w)) {
if (isTRUE(onlyshared(cobraperf))) {
w <- w[which(rowSums(is.na(w)) == 0), , drop = FALSE]
} else {
w <- w[which(!is.na(w$truth)), , drop = FALSE]
}
} else
w <- w
w[is.na(w)] <- 0
w
})
}
}
}
## Define colors
use_colors <- define_colors(cobraperf = cobraperf, palette = colorscheme,
facetted = facetted, incloverall = incloverall,
conditionalfill = conditionalfill)
## Exclude overall level
for (sl in c("tpr", "fpr", "corr", "roc", "fpc", "scatter", "deviation",
"fdrtprcurve", "fdrtpr", "fdrnbrcurve", "fdrnbr",
"fsrnbrcurve")) {
if (splv(cobraperf) != "none") {
if (!(isTRUE(incloverall))) {
if (length(slot(cobraperf, sl)) != 0)
slot(cobraperf, sl) <- subset(slot(cobraperf, sl),
splitval != "overall")
}
}
if (length(slot(cobraperf, sl)) != 0) {
if (isTRUE(facetted))
slot(cobraperf, sl)$num_method <-
as.numeric(as.factor(slot(cobraperf, sl)$method))
else
slot(cobraperf, sl)$num_method <-
as.numeric(as.factor(slot(cobraperf, sl)$fullmethod))
}
}
if (splv(cobraperf) != "none") {
if (!(isTRUE(incloverall))) {
if (length(overlap(cobraperf)) != 0)
overlap(cobraperf)$overall <- NULL
}
}
cobraperf <- as(cobraperf, "COBRAPlot")
facetted(cobraperf) <- facetted
plotcolors(cobraperf) <- use_colors
cobraperf
}
#' Reorder levels in COBRAPlot object
#'
#' Reorder levels in COBRAPlot object to achieve desired ordering in figure
#' legends etc. If facetted(cobraplot) is TRUE, the releveling will be applied
#' to the "method" column. If facetted(cobraplot) is FALSE, it will be applied
#' to the "fullmethod" column.
#'
#' @param cobraplot A COBRAPlot object
#' @param levels A character vector giving the order of the levels. Any values
#' not present in the COBRAPlot object will be removed. Any methods present in
#' the COBRAPlot object but not contained in this vector will be added at the
#' end.
#'
#' @return A COBRAPlot object
#' @author Charlotte Soneson
#'
#' @examples
#' data(cobradata_example_sval)
#' cobraperf <- calculate_performance(cobradata_example_sval,
#' binary_truth = "status", aspects = "fpr")
#' cobraplot <- prepare_data_for_plot(cobraperf, colorscheme = "Dark2",
#' incltruth = TRUE)
#' cobraplot <- reorder_levels(cobraplot, c("Method2", "Method1"))
#'
#' @export
reorder_levels <- function(cobraplot, levels) {
if (isTRUE(facetted(cobraplot))) column <- "method"
else column <- "fullmethod"
for (sl in c("tpr", "fpr", "corr", "roc", "fpc", "scatter", "deviation",
"fdrtprcurve", "fdrtpr", "fdrnbrcurve", "fdrnbr",
"fsrnbrcurve", "fsrnbr")) {
if (length(slot(cobraplot, sl)) != 0) {
levels_to_keep <- levels[which(levels %in% slot(cobraplot, sl)[, column])]
if (length(setdiff(unique(slot(cobraplot, sl)[, column]),
levels_to_keep)) != 0) {
message("The following methods have been added to the ", sl, " slot: ",
paste0(setdiff(unique(as.character(slot(cobraplot,
sl)[, column])),
levels_to_keep), collapse = ", "))
levels_to_keep <-
c(levels_to_keep,
sort(setdiff(unique(as.character(slot(cobraplot, sl)[, column])),
levels_to_keep)))
}
slot(cobraplot, sl)[, column] <-
factor(as.character(slot(cobraplot, sl)[, column]),
levels = levels_to_keep)
slot(cobraplot, sl)$num_method <-
as.numeric(slot(cobraplot, sl)[, column])
}
}
cobraplot
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.