Nothing
# Compute model output for the large design matrix
#
# Compute model output for the large design matrix, i.e. based all the
# selected variables per split and per data set
#
# @return list of lm/glm objects for the large design matrix
compMOD_large <- function(x, y, clvar, res.multisplit, family) {
MODobj_data <- mapply(compMOD_one_data, x = x, y = y, clvar = clvar,
res.multisplit = res.multisplit,
MoreArgs = list(family = family),
SIMPLIFY = FALSE)
return(MODobj_data)
} # {compMOD_large}
# Compute output of lm/glm model for each data set
compMOD_one_data <- function(x, y, clvar, res.multisplit, family){
# prepare the variables for the call of comp_cluster_pval
B <- nrow(res.multisplit$out.sample)
# save all the rows of the matrix in a list
out.sample <- split(res.multisplit$out.sample, seq(B))
sel.coef <- split(res.multisplit$sel.coef, seq(B))
# compute the lm/glm output for the large design matrix and for each split
MODobj_split <- mapply(FUN = compMOD_one_split, out.sample = out.sample,
sel.coef = sel.coef,
MoreArgs = list(x = x, y = y, clvar = clvar,
family = family),
SIMPLIFY = FALSE)
return(MODobj_split)
} # {compMOD_one_data}
# Compute output of lm/glm model for each split
compMOD_one_split <- function(x, y, clvar, out.sample, sel.coef, family) {
sel.coef <- sel.coef[!is.na(sel.coef)]
MODobj <- compMOD_one(x = x[out.sample, sel.coef, drop = FALSE],
y = y[out.sample],
clvar = clvar[out.sample, ],
family = family)
return(MODobj)
} # {compMOD_one_split}
# Compute output of lm/glm model
#' @importFrom stats lm
compMOD_one <- function (x, y, clvar, family) {
# data.large <- cbind(clvar, x)
# TODO use switch if there would be more possible families!
MODout <-
if (family == "binomial") {
MEL(cbind(clvar, x), y, maxit = 100)
} else if (family == "gaussian") {
lm(y ~ cbind(clvar, x), model = FALSE, qr = FALSE)
}
return(MODout)
} # {compMOD_one}
# Create skeleton of model output for the small design matrix
#
# Create skeleton of model output for the small design matrix,
# i.e. we fill it with NULL:
#
# @return list of NULL for the small design matrix
compMOD_small <- function(res.multisplit) {
MODobj_data <- mapply(compMOD_one_data_S, res.multisplit = res.multisplit,
SIMPLIFY = FALSE)
return(MODobj_data)
} # {compMOD_large_S}
# Compute output of lm/glm model for each data set
compMOD_one_data_S <- function(res.multisplit){
# prepare the variables for the call of comp_cluster_pval
B <- nrow(res.multisplit$out.sample)
# return NULL for each split
MODobj_split <- mapply(FUN = compMOD_one_split_S, b = seq_len(B),
SIMPLIFY = FALSE)
return(MODobj_split)
} # {compMOD_one_data_S}
# Compute output of lm/glm model for each split
compMOD_one_split_S <- function(b) {
return(NULL)
} # {compMOD_one_split_S}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.